Intro to Deep Learning

Computer Vision 236873, Winter 2019
(slides from CS131, Stanford)
Today’s agenda

- Review of convolutions and classification
- Creating a convolution-based classifier
- Overview of machine learning
 - Neural networks
 - Gradient descent
 - Backprop
- Our classifier’s performance
Recall convolutions...

\[
f[n, m] \ast h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l]
\]
Recall convolutions…

\[f[n, m] \ast h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l] \]
Recall convolutions...

\[
\begin{array}{ccc}
12 & 3 & 19 \\
25 & 10 & 1 \\
9 & 7 & 17 \\
\end{array}
\]

\[
\begin{array}{cc}
1 & 2 \\
3 & 4 \\
\end{array}
\]

\[
\begin{array}{cc}
133 & 75 \\
? & ? \\
\end{array}
\]

\[
f[n, m] \ast h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l]
\]
Recall convolutions…

\[
f[n, m] * h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l]
\]

\[
\begin{array}{ccc}
12 & 3 & 19 \\
25 & 10 & 1 \\
9 & 7 & 17 \\
\end{array} * \begin{array}{cc}
1 & 2 \\
3 & 4 \\
\end{array} = \begin{array}{cc}
133 & 75 \\
100 & ? \\
\end{array}
\]
Recall convolutions...

\[
f[n, m] \ast h[n, m] = \sum_{k=\infty}^{\infty} \sum_{l=\infty}^{\infty} f[k, l] h[n - k, m - l]
\]
Recall convolutions...

\[
f[n, m] \ast h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \ h[n - k, m - l]
\]
Recall convolutions...

\[
f[n, m] \ast h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l]
\]
Recall convolutions...

\[f[n, m] \ast h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l] \]
Why they are useful

Allow us to find **interesting insights/features** from images!
Recall Image Classification…

Allow us to use features to put **images in categories**!
Wait a Minute…

Convolution = Image -> Features

Classification Algorithm = Features -> Category
Wait a Minute…

Convolution = Image -> Features

Classification Algorithm = Features -> Category

Let’s put ‘em together!
Let’s build a **convolution-based** classification algorithm for the CIFAR-10 dataset (10 classes, 32x32 images):
Feature Extractor

32x32 “Airplane Filter” =
Feature Extractor

32x32 “Airplane Filter” = “probability” of the image being an airplane
Feature Extractor

32x32 “Airplane Filter”

“probability” of the image being an airplane
Feature Extractor

This is not really a probability but a score, because it can be less than 0 and greater than 1

32x32 “Airplane Filter”
Feature Extractor

32x32 “Automobile Filter”

“probability” of the image being an automobile
Feature Extractor

32x32 “Bird Filter” = “probability” of the image being a bird
Feature Extractor

32x32 “Truck Filter”

“probability” of the image being a truck
$c_{\text{pred}} = \arg \max(f(...))$
We predict the class that has the highest probability!

\[c_{pred} = \text{arg max}(\quad) \]
The Whole Shebang

Image → Feature Extractor → Prediction \hat{y} → Classifier → argmax → c_{pred}
The Whole Shebang

Image → Feature Extractor → Prediction \hat{y} → Classifier → argmax → c_{pred}
The Whole Shebang

Image → Feature Extractor → Prediction → Classifier → c_{pred}

Classification Output
Reframing convolution

\[
\begin{array}{cc}
12 & 21 \\
18 & 31 \\
\end{array} \quad \ast \quad \begin{array}{cc}
1 & 2 \\
3 & 4 \\
\end{array}
\]
Reframing convolution

\[
\begin{bmatrix}
12 & 21 \\
18 & 31
\end{bmatrix}
\ast
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
=
\begin{bmatrix}
12 \\
21 \\
18 \\
31
\end{bmatrix}
\cdot
\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}
\]
Reframed Feature Extractor

* 32x32 “Airplane Filter”
Reframed Feature Extractor

32x32 “Airplane Filter”

= Image Vector

= Airplane Weight Vector
New Feature Extractor

Image Vector Airplane Weight Vector

\[\cdot \]

\[= \]

“probability” of the image being an airplane
New Feature Extractor

Image Vector Automobile Weight Vector

\[\text{"probability" of the image being an automobile} \]

\[= \]
New Feature Extractor

Image Vector Bird Weight Vector

“probability” of the image being a bird
New Feature Extractor

Image Vector

Truck Weight Vector

“probability” of the image being a truck

=
New Feature Extractor

Weight Matrix

Image Vector

\[\text{Weight Matrix} \times \text{Image Vector} = \]
New Feature Extractor

\[W x = \hat{y} \]

\(W \): the \((10 \times 1024)\) matrix of weight vectors

\(x \): the \((1024 \times 1)\) image vector

\(\hat{y} \): the \((10 \times 1)\) vector of class “probabilities”
New Feature Extractor

This simple computation is called a fully-connected layer!

\[Wx = \hat{y} \]

\(W \): the (10x1024) matrix of weight vectors

\(x \): the (1024x1) image vector

\(\hat{y} \): the (10x1) vector of class “probabilities”
Aside: Fully-Connected Neural Networks

The diagram illustrates a neural network with inputs for Height, Width, and Num_Legs, which are fed into an algorithm. The output of the algorithm is represented by \hat{y}, indicating whether the input is a Dog or Not Dog.
Aside: Fully-Connected Neural Networks

\[x \rightarrow \hat{y} \]

- **Height**
- **Width**
- **Num_Legs**

\(\gamma \)
Aside: Fully-Connected Neural Networks

Height
Width
Num_Legs

\[x \]

\[\hat{y} \]

\[w_1 \]
\[w_2 \]
\[w_3 \]
\[w_4 \]
\[w_5 \]
\[w_6 \]
Aside: Fully-Connected Neural Networks

\[\begin{bmatrix} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \end{bmatrix} \cdot \begin{array}{c} W \\ x \end{array} = \hat{y} \]

\[Wx = \hat{y} \]
Aside: Fully-Connected Neural Networks

”Fully-Connected”

Every node is connected to every other node

”Neural Network”

Kinda looks like a neuron!
New Feature Extractor

\[Wx = \hat{y} \]

\[W: \text{ the (10x1024) matrix of weight vectors} \]

\[x: \text{ the (1024x1) image vector} \]

\[\hat{y}: \text{ the (10x1) vector of class “probabilities”} \]
New Feature Extractor

\[Wx = \hat{y} \]

\(W \): the \((10 \times 1024)\) matrix of weight vectors

\(x \): the \((1024 \times 1)\) image vector

\(\hat{y} \): the \((10 \times 1)\) vector of class “probabilities”?
Class Probability Vector

- Must have values between 0 and 1
- Must sum to 1
- There’s no guarantee either requirement is satisfied!

\[\hat{y} = Wx \]
Softmax Function

\[a_{(x)}_i = \frac{e^{x_i}}{\sum_j e^{x_j}} \]
Softmax Function

\[
\text{Softmax: } a(x)_i = \frac{e^{x_i}}{\sum_j e^{x_j}}
\]

Diagram:
- Input vector: \(a = [1, -3] \)
- Softmax output: \(SM(a) = [0.98, 0.02] \)
Class Probability Vector

- Must have values between 0 and 1
- Must sum to 1

\[\hat{y} = Wx \]
Class Probability Vector

- Must have values between 0 and 1
- Must sum to 1

\[\hat{y} = SM(Wx) \]
System so far...

- Feature extractor:

\[
\hat{y} = SM(Wx)
\]

- Classifier:

\[
c_{pred} = \text{arg max}(\hat{y})
\]
System so far...

- Feature extractor:

\[\hat{y} = SM(Wx) \]

- Classifier:

\[c_{pred} = \arg \max (\hat{y}) \]
System so far...

- Feature extractor:

- Classifier:

\[c_{pred} = \text{arg max} (y) \]

\[y = SM(Wx) \]
Using the label

Let’s compare our prediction with the real answer! For each image, we have the label γ which tells us the true class:

γ

$\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}$

Dog class index
Key Insight:

We want:

$$\arg\max(\hat{y}) = \arg\max(y)$$
Key Insight:

We want:

$$\arg\max(\hat{y}) = \arg\max(y)$$

Which we can accomplish by:

$$W^* = \arg\min_W \left(-\sum_{x,y} \log(p_c) \right)$$
Key Insight:

We want:

\[\text{arg max}(\hat{y}) = \text{arg max}(y) \]

Which we can accomplish by:

\[W^* = \text{arg min}_W \left(- \sum_{x,y} \log(p_c) \right) \]

Where \(p_c \) is the probability of the true class in \(\hat{y} \).
Cross-Entropy Loss

Our loss function represents *how bad we are currently doing*:

\[L = -\log(p_c) \]
Cross-Entropy Loss

Our loss function represents *how bad we are currently doing*:

\[L = -\log(p_c) \]

Examples:

\[p_c = 0 \rightarrow L = -\log(0) = \infty \]
\[p_c = 0.1 \rightarrow L = -\log(0.1) = 2.3 \]
\[p_c = 0.9 \rightarrow L = -\log(0.9) = 0.1 \]
\[p_c = 1 \rightarrow L = -\log(1) = 0 \]
Cross-Entropy Loss

Our loss function represents *how bad we are currently doing*:

\[L = -\log(p_c) \]

Examples:

- \(p_c = 0 \rightarrow L = -\log(0) = \infty \)
- \(p_c = 0.1 \rightarrow L = -\log(0.1) = 2.3 \)
- \(p_c = 0.9 \rightarrow L = -\log(0.9) = 0.1 \)
- \(p_c = 1 \rightarrow L = -\log(1) = 0 \)

The larger the loss, the worse our prediction. We want to minimize L!
Minimizing Loss

\[L \]

\[w \]

GRADIENT DESCENT!
Gradient Descent Pseudocode

for i in {0,...,num_epochs}:
 for x, y in data:
 \(\hat{y} = SM(Wx) \)
 \(L = CE(\hat{y}, y) \)
 \(\frac{dL}{dW} = ??? \)
 \(W := W - \alpha \frac{dL}{dW} \)
Getting the Gradient

\[z = Wx \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = \frac{dL}{dz} \frac{dz}{dW} \]
Getting the Gradient

\[z = Wx \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = \frac{dL}{dz}(x) \]
Getting the Gradient

\[z = Wx \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = (SM(z) - y)(x) \]
Getting the Gradient

\[z = Wx \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = (SM(z) - y)(x^T) \]
Getting the Gradient

\[z = Wx \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = (SM(z) - y)^T \]
What is Backprop?

\[z = Wx \]
\[L = \text{SCE}(z, y) \]
\[\frac{dL}{dW} = \frac{dL}{dz} \frac{dz}{dW} \]
What is Backprop?

\[z = Wx \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = \frac{dL}{dz} \frac{dz}{dW} \]
What is Backprop?

\[z = W x \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = \frac{dL}{dz} \frac{dz}{dW} \]
What is Backprop?

When computations are treated as nodes, all derivatives depend only on inputs to that node.

\[z = Wx \]
\[L = SCE(z, y) \]

\[\frac{dL}{dW} = \frac{dL}{dz} \frac{dz}{dW} \]
What is Backprop?

When computations are treated as nodes, all derivatives depend only on inputs to that node.

So, we can cache the initial computation and reuse!
class FullyConnected:
 def __init__(self):
 self.cache = {}

 def forward(self, W, x):
 self.cache['x'] = x
 return np.dot(W, x)

 def backward(self, dout):
 x = self.cache['x']
 return np.matmul(dout, x.T)

class SCELoss:
 def __init__(self):
 self.cache = {}

 def forward(self, z, y):
 self.cache['z'] = z
 self.cache['y'] = y
 return sce(z, y)

 def backward(self):
 z = self.cache['z']
 y = self.cache['y']
 return sce(z, y) - y
Gradient Descent Pseudocode (Updated)

for i in {0,...,num_epochs}:
 for x, y in data:
 \(\hat{y} = SM(Wx) \)
 \(L = CE(\hat{y}, y) \)
 \(\frac{dL}{dW} = \ldots \)
 \(W := W - \alpha \frac{dL}{dW} \)
Gradient Descent Pseudocode (Updated)

for i in {0,...,num_epochs}:
 for x, y in data:
 \(\hat{y} = SM(Wx) \)
 \(L = CE(\hat{y}, y) \)
 \(\frac{dL}{dW} = \text{backprop}(L) \)
 \(W := W - \alpha \frac{dL}{dW} \)
Gradient Descent Pseudocode (Updated)

for i in \{0, \ldots, \text{num_epochs}\}:
 for x, y in data:
 \(\hat{y} = SM(Wx) \)
 \(L = CE(\hat{y}, y) \)
 \(\frac{dL}{dw} = \text{backprop}(L) \)
 \(W := W - \alpha \frac{dL}{dw} \)
Our Classification System

Image 32x32x10 Conv Block → Prediction \(\hat{\gamma} \) → argmax → \(c_{\text{pred}} \)

<table>
<thead>
<tr>
<th>Image</th>
<th>Feature Extractor</th>
<th>Prediction (\hat{\gamma})</th>
<th>Classifier</th>
<th>Classification Output</th>
</tr>
</thead>
</table>
Our Classification System (modified)

Input Image

Feature Extractor

Prediction \hat{y}

Classifier

Classification Output

Input Label

γ

CE

L

$argmax$

c_{pred}

Loss Function

Loss Value
Our Classification System (modified)

Input Image ➔ Feature Extractor ➔ Prediction \hat{y} ➔ argmax ➔ c_{pred}

Input Label ➔ γ ➔ CE ➔ L ➔ Loss Value

1) Minimize this...
Our Classification System (modified)

Input Image

Feature Extractor

Prediction \hat{y}

Classifier

Classification Output

2) By modifying this...

γ

1) Minimize this...

CE

Loss Function

L

Loss Value
Our Classification System (modified)

1) Minimize this...

2) By modifying this...

3) Using gradient descent!
Our Classification System (modified)

Input Image → Feature Extractor → Classifier → Classification Output

Loss Function: \(CE \) → Loss Value: \(L \)

\(\gamma \) By modifying this...

1) Minimize this...

3) Using gradient descent!
Our System’s Performance

- ~40% accuracy on CIFAR-10 test
 - Best class: Truck (~60%)
 - Worst class: Horse (~16%)

- Check out the model at: https://tinyurl.com/cifar10

- What about the filters? What do they look like?
Visualizing the Filters

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck