236861 Geometric Computer Vision

Tutorial 1

Calculus of variations

Gautam Pai
What is *calculus of variations*?

- Deals with functions of functions – *Functionals*
- Defines optimal functions, optimal surfaces, optimal images, and so forth..
What is \textit{calculus of variations}?

Calculus

1. **Function**
 \[f : \mathbb{R}^n \mapsto \mathbb{R} \]

 Example:
 \[f(x, y) = x^2 + y^2 \]

2. **Derivative**
 \[\frac{df(x)}{dx} = \frac{\partial}{\partial \epsilon} f(x + \epsilon \Delta x) \bigg|_{\epsilon=0} \]

Calculus of variations

Functional

\[f : \mathbb{F} \mapsto \mathbb{R}, \text{ in particular} \]

\[f(u) = \int_{\Omega} F \left(x, u(x), u'(x), \ldots \right) dx \]

Example:

\[f(u) = \int_{\Omega} \| \nabla u(x, y) \|_2 \, dx \, dy \]

Variation

\[\delta f(u) = \frac{\partial}{\partial \epsilon} f(u + \epsilon u) \bigg|_{\epsilon=0} \]

\[\delta f = \frac{\partial}{\partial \epsilon} f(u + \epsilon \delta u) \bigg|_{\epsilon=0} \]
What is *calculus of variations*?

Figure: Variations of a function as high dimensional directions
What is *calculus of variations*?

Calculus

3. **Local (relative) minimum**
 \[f(x^*) \leq f(x) \]
 \[\forall x : \| x - x^* \| \leq \alpha \]

4. **Necessary condition for local extremum**
 \[\frac{df(x)}{dx} = 0 \]
 \[\delta f(u) \delta u = 0 \]

5. **Sufficient condition for local minimum**
 \[\frac{d^2f(x)}{dx^2} \geq 0 \]
 \[\nabla^2 f(x) \geq 0 \]

Calculus of variations

3. **Local (relative) minimum**
 \[f(u^*) \leq f(u) \]
 \[\forall u : \max_{x \in \Omega} | u(x) - u^*(x) | \leq \alpha \]

4. **Necessary condition for local extremum**

5. **Sufficient condition for local minimum**
 \[\text{More complex theory} \]
What is *calculus of variations*?

Calculus

3. Constrained local minimum

\[
\min_x f(x) \quad \text{s.t.} \quad g(x) = 0
\]

4. Lagrangian

\[
\ell(x) = f(x) + \lambda g(x)
\]

5. Method of Lagrange multipliers

\[
\frac{d\ell(x^*)}{dx} = 0 \quad \text{s.t.} \quad g(x) = 0
\]

Calculus of variations

\[
\min_{u(x)} \int_{\Omega} F(x, u(x), u'(x)) \, dx \quad \text{s.t.} \quad \int_{\Omega} G(x, u(x), u'(x)) = 0
\]

\[
\ell(u) = \int_{\Omega} (F + \lambda G) \, dx
\]

\[
\frac{\delta \ell(u^*)}{\delta u} = 0 \quad \text{s.t.} \quad \int_{\Omega} G(x, u^*(x), u'^*(x)) = 0
\]
Examples of functionals

1. **Curve length** \[L(y) = \int_{x_0}^{x_1} \sqrt{1 + y'^2} \, dx \]

 The length of a non-parametric curve \(y(x) \).

2. **Curve length** \[L(x, y) = \int_{0}^{1} \sqrt{x'^2 + y'^2} \, dt \]

 The length of a parametric curve \((x(t), y(t)) \).
3. Surface area \[A(z) = \int_S \sqrt{1 + z_x^2 + z_y^2} \, dx \, dy \]

The area of a non-parametric surface \(S = (x, y, z(x, y)) \).
Examples of functionals

4. **Total variation** \(TV(y) = \int_{x_0}^{x_1} |y'| dx \)

The “oscillation strength” of a non-parametric curve \(y(x) \).

![Graphs showing original, noisy, and denoised signals](image)

Figure: Left to Right: original signal, noisy signal, denoised signal.
The Euler-Lagrange Equation

Given the functional

\[f(u) = \int_{x_0}^{x_1} F(x, u(x), u'(x)) \, dx \]

with \(F \in \mathcal{C}^3 \) and all admissible \(u(x) \) having fixed boundary values \(u(x_0) = u^0 \) and \(u(x_1) = u^1 \).

An extremum of \(f(u) \) satisfies the differential equation

\[F_u - \frac{d}{dx} F_{u'} = 0 \]

with the boundary conditions \(u(x_0) = u^0 \) and \(u(x_1) = u^1 \).

This equation is known as the Euler-Lagrange equation.
The Euler-Lagrange Equation

Note: the second term of the equation does not have a parallel in a finite dimension gradient expression from multivariate calculus – this term’s form expresses the relation of altering the value of u based on the effect of its derivative. Later on we will see how this term stems from the derivation of the E-L equation.
The E-L equation (independent on $u(x)$)

If the integrand does not depend on $u(x)$,

$$f(u) = \int_{x_0}^{x_1} F(x, u'(x)) \, dx,$$

the E-L equation becomes a first-order differential equation

$$\frac{d}{dx} F_{u'} = 0$$

or

$$F_{u'} = \text{const}.$$
The E-L equation (independent on $u'(x)$)

If the integrand does not depend on $u'(x)$,

$$f(u) = \int_{x_0}^{x_1} F(x, u(x)) \, dx,$$

the E-L equation becomes an algebraic equation

$$F_u(x, u(x)) = 0.$$
The E-L equation (high-order functionals)

Given the functional

\[f(u) = \int_{x_0}^{x_1} F \left(x, u(x), u'(x), \ldots, u^{(n)}(x) \right) \, dx \]

with \(F \in C^{n+2} \) and fixed boundary values \(u^{(i)}(x_0) = u_0^{(i)} \) and \(u^{(i)}(x_1) = u_1^{(i)} \) for \(i = 0, \ldots, n-1 \).

The Euler-Lagrange equation (also known as the Euler-Poisson equation) is

\[F_{u'} - \frac{d}{dx} F_{u''} + \frac{d^2}{dx^2} F_{u'''} + (-1)^n \frac{d^n}{dx^n} F_{u^{(n)}} = 0. \]
The E-L equation (multiple independent variables)

Given the functional

\[f(u) = \int_{\Omega} F(x, u(x), u_{x_1}(x), \ldots, u_{x_n}(x)) \, dx \]

with \(x \in \mathbb{R}^n \) and \(u|_{\partial \Omega} = u_{\partial \Omega} \).

An extremum of \(f(u) \) satisfies the differential equation

\[\frac{\partial F}{\partial u} - \frac{d}{dx_1} \frac{\partial F}{\partial u_{x_1}} - \ldots - \frac{d}{dx_n} \frac{\partial F}{\partial u_{x_n}} = 0 \]

with the boundary condition \(u|_{\partial \Omega} = u_{\partial \Omega} \).
The E-L equation (multiple functions)

Given the functional

$$f(u) = \int_{x_0}^{x_1} F(x, u_1(x), ..., u_n(x), u'_1(x), ..., u'_n(x)) \, dx$$

with $F \in C^3$ and all admissible $u(x)$ having fixed boundary values $u_i(x_0) = u_i^0$ and $u_i(x_1) = u_i^1$.

An extremum of $f(u)$ satisfies the system of differential equations

$$F_{u_i} - \frac{d}{dx} F_{u'_i} = 0$$

with the boundary conditions $u(x_0) = u_0$ and $u(x_1) = u_1$.
Proof of the Euler-Lagrange equation

For an optimal function \(u(x) \), we require

\[
\frac{d\tilde{f}}{d\epsilon} = 0, \quad \tilde{f}(u) = \int F(x, \tilde{u}, \tilde{u}') dx, \quad \tilde{u}(x) = u(x) + \epsilon \eta(x)
\]

Developing the term for the variation we obtain:

\[
\frac{d\tilde{f}}{d\epsilon} = \int \frac{dF}{d\epsilon}(x, \tilde{u}, \tilde{u}') dx = \int \frac{\partial F}{\partial x} \frac{\partial \tilde{x}}{\partial \epsilon} + \frac{\partial F}{\partial \tilde{u}} \frac{\partial \tilde{u}}{\partial \epsilon} + \frac{\partial F}{\partial \tilde{u}'} \frac{\partial \tilde{u}'}{\partial \epsilon} dx = \int \eta \frac{\partial F}{\partial u} + \eta' \frac{\partial F}{\partial u'} dx
\]
Using integration by parts, we obtain: And hence,

\[\int \eta \frac{\partial F}{\partial u} + \eta' \frac{\partial F}{\partial u'} \, dx = \]

\[\int \eta \left(\frac{\partial F}{\partial u} - \frac{d}{dx} \frac{\partial F}{\partial u'} \right) \, dx + \left[\eta \frac{\partial F}{\partial u'} \right]^{x_1}_{x_0} \]

Since this equation should take place for every \(\eta \), and assuming the boundary term cancels out, we obtain the E-L equation:

\[\frac{\partial F}{\partial u} - \frac{d}{dx} \frac{\partial F}{\partial u'} = 0 \]
Problem 1: Minimum distance on a plane

Prove that the family of curves minimizing the distance

\[L = \int_{-1}^{1} \sqrt{1 + y'^2} \, dx, \quad y(-1) = a, \ y(1) = b \]

in the plane are straight lines.
Problem 1: Minimum distance on a plane (cont.)

Solution
The Euler-Lagrange equation

\[0 = \frac{d}{dx} F_{y'} - F_y = \frac{d}{dx} \left(\frac{y'}{\sqrt{1 + y'^2}} \right). \]

Integration w.r.t. \(x \) yields

\[\frac{y'}{\sqrt{1 + y'^2}} = \gamma = \text{const.} \]
Substitute $y' = \tan \theta$:

$$\frac{y'}{\sqrt{1 + y'^2}} = \frac{\frac{\sin \theta}{\cos \theta}}{\sqrt{1 + \frac{\sin^2 \theta}{\cos^2 \theta}}} = \frac{\sin \theta}{\cos \theta} \sqrt{\frac{\cos^2 \theta}{1}} = \sin \theta,$$

from where $\sin \theta = \gamma$. Substituting again yields

$$y' = \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\pm \sin \theta}{\sqrt{1 - \sin^2 \theta}} = \frac{\pm \gamma}{\sqrt{1 - \gamma^2}} = \alpha = \text{const},$$

from where

$$y = \alpha x + \beta,$$

$\beta = \text{const}$. The solution describes a line in the plane; the exact values of α, β are determined from the endpoint values.
Problem 2: Heat Equation

We would like to minimize:

$$\int_{\Omega} |\nabla u|^2 = \int_{\Omega} (u_x^2 + u_y^2) d\Omega$$

The Euler-Lagrange equation is:

$$\text{EL}(u) = \frac{d}{dx} (F_{u_x}) + \frac{d}{dy} (F_{u_y})$$

$$= \frac{d}{dx} (2u_x) + \frac{d}{dy} (2u_y)$$

$$= 2\text{div} (\nabla u)$$

$$= 2\Delta u$$

A gradient descent of the functional can be described as

$$u_t = \text{EL}(u) = 2\Delta u$$
Problem 3: Total Variation Denoising

We would like to minimize:

$$\int_{\Omega} \sqrt{\epsilon^2 + u_x^2 + u_y^2} \, d\Omega$$

The Euler-Lagrange equation is:

$$EL(u) = \frac{d}{dx} \left(\frac{2u_x}{2\sqrt{\epsilon^2 + u_x^2 + u_y^2}} \right) + \frac{d}{dy} \left(\frac{2u_y}{2\sqrt{\epsilon^2 + u_x^2 + u_y^2}} \right)$$

$$= \text{div} \left(\frac{\nabla u}{\sqrt{\epsilon^2 + u_x^2 + u_y^2}} \right)$$

Again, we can use the EL condition as a gradient term, to smooth the image:

$$u_t = \text{div} \left(\frac{\nabla u}{\sqrt{\epsilon^2 + u_x^2 + u_y^2}} \right) \approx \text{div} \left(\frac{\nabla u}{|\nabla u|} \right)$$
Figure: Left to Right: original signal, noisy signal, denoised signal, a simple linear diffusion result.
Problem 3: Total Variation Denoising (cont.)

A similar problem is that of inpainting – here we assume a known portion of the pixels were corrupted and apply the TV flow only to them.

Figure: Left to Right: Inpainting using total variation: before (50% of the pixels removed) and after inpainting.

Figure: Left to Right: Inpainting using total variation: before (50% of the pixels removed) and after inpainting.