Presented by: Roi Shikler & Gil Elbaz
Advisor: Prof. Michael Lindenbaum

Topics of the lecture:

- Problem statement
- Review of slow R-CNN
- Review of Fast R-CNN
- Review of Faster R-CNN
- Compare with other methods
- Take away

PASCAL Visual Object Classes

"The main goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes" [from the challenge homepage]

The twenty object classes that have been selected are:

- **Person**: person
- **Animal**: bird, cat, cow, dog, horse, sheep
- **Vehicle**: airplane, bicycle, boat, bus, car, motorbike, train
- **Indoor**: bottle, chair, dining table, potted plant, sofa, TV/monitor
mAP: Mean Average Precision.

Mean average precision for a set of queries is the mean of the average precision scores for each query.

\[mAP = \frac{\sum P_\in Q \text{AvgP}(\phi)}{|Q|} \]

Plateau & Increasing complexity
Topics of the lecture:

- Problem statement
- Review of slow R-CNN
 - Review of Fast R-CNN
 - Review of Faster R-CNN
 - Compare with other methods
 - Take away

R-CNN - Article (2013)

Rich feature hierarchies for accurate object detection and semantic segmentation

R-CNN:

Input image
Extract region proposals (~2k/image)
Compute CNN features
Classify regions (linear SVM)

PASCAL VOC detection history

R-CNN at test time: Step 1
RCNN at test time: Step 1

Input image → Extract region proposals (~2k / image)

Selective Search [van de Sande, Uijlings et al.] (Agnostic proposal method)

RCNN at test time: Step 2

Input image → Extract region proposals (~2k / image) → Compute CNN features

Dilate Proposal

RCNN at test time: Step 2

Input image → Extract region proposals (~2k / image) → Compute CNN features

a. Crop

RCNN at test time: Step 2

Input image → Extract region proposals (~2k / image) → Compute CNN features

a. Crop

b. Scale (anisotropic)

RCNN at test time: Step 2

Input image → Extract region proposals (~2k / image) → Compute CNN features

b. Scale

c. Forward propagate

Output: “fc7” features

RCNN at test time: Step 2

Input image → Extract region proposals (~2k / image) → Compute CNN features

b. Scale

c. Forward propagate

Output: “fc7” features

Five connected convolutional layers, and two fully connected layers.

Input: 227*227*3 = 150528

Output: 4096-dimensional feature vector
RCNN at test time: Step 2

- Input image
- Extract region proposals (~2k / image)
- Compute CNN features
- b. Scale
- Output: "fc7" features

RCNN at test time: Step 3

- Input image
- Extract region proposals (~2k / image)
- Compute CNN features
- b. Scale
- 4096-dimensional fc7 feature vector
- Linear classifiers (SVM)

Step 4: Object proposal refinement

- Course Detection (using HOG + BOVW)
- Feature Extraction from Color and Edges
- Relocalization + Resizing with Graph-Cuts
- Linear regression on CNN features

Step 4: Object proposal refinement

- Original proposal
- Predicted object bounding box

In RCNN from Selective Search

Course Detection

- Using HOG + BOVW
- (~20-30% overlap)

Feature Extraction from Color and Edges

- Color
- Edge

Relocalization + Resizing with Graph-Cuts

- [fine tuning]
Steps for training a slow R-CNN detector:

1. [offline] $M \leftarrow \text{Pre-train a ConvNet for ImageNet classification}$
2. $M' \leftarrow \text{Fine-tune } M \text{ for object detection (softmax classifier)}$
3. $F \leftarrow \text{Cache feature vectors to disc using } M'$
4. Train post hoc linear SVMs on F for object classification
5. Train post hoc linear bounding box regressors on F

* “post hoc” means the parameters are learned after the ConvNet is fixed
Review slow R-CNN

What’s wrong with slow R-CNN?
What’s wrong with slow R-CNN?

- Ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post hoc linear SVMs (hinge loss)
 - Train post hoc bounding-box regressors (squared loss)

- Training is slow, takes a lot of disk space
 - The training process takes about 84h

- Detection (inference) is slow
 - About 47s per image
 - ~2k ConvNet forward passes per image

Topics of the lecture:

- Problem statement
- Review of slow R-CNN
- Review of Fast R-CNN
- Review of Faster R-CNN
- Compare with other methods
- Take away

PASCAL VOC detection history
Fast R-CNN objectives
Fix most of what’s wrong with slow R-CNN and SPP-net
• Train the detector in a single stage, end-to-end
 • No caching features to disk
 • No post hoc training steps
• Train all layers of the network
 [Training the conv layers is important for very deep networks]
Review of the fast R-CNN training pipeline

Benefits of end-to-end training
- Faster training
 - No reading/writing features from/to disk
 - No training post hoc SVMs and bounding-box regressors
- Verified empirically: optimizing a single multi-task objective is more accurate than optimizing objectives independently

Slow R-CNN vs. Fast R-CNN
- Training time: 84 hours / 8.75 hours
- VOC07 test mAP: 66.0% / 68.1%
- Listing time per image: 47s / 0.32s
 - With selective search: 49s / 2.05s (+2x per image)
Topics of the lecture:

- Problem statement
- Review of slow R-CNN
- Review of Fast R-CNN
- Review of Faster R-CNN

- Compare with other methods
- Take away

Faster R-CNN: Region Proposal Network

Slide a small window on the feature map.

- Build a small network for:
 - Classifying: object or not-object
 - Regressing: bounding-box locations

Position of the sliding window provides localization information with reference to the image.

Box regression provides finer localization information with reference to this sliding window.

Review of the faster R-CNN

- In Fast R-CNN: Single loss
 - Region Proposal Network
 - Classifying: object or not
 - Regressing: bounding-boxes

- Single loss
 - Anchor boxes:
 - Translation invariant
 - Regression: gives offsets from anchor boxes
 - Classification gives the probability that each regressed box shows an object
Topics of the lecture:

- Problem statement
- Review of slow R-CNN
- Review of Fast R-CNN
- Review of Faster R-CNN
- Compare with other methods
 - Take away

R-CNN Results

- Big improvement using CNN
- Features from deeper network helps a lot

R-CNN Results

- Results by using pre-CNN methods

R-CNN Results

- Bounding box regression shows a 5% improvement

Fast R-CNN Results

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time</td>
<td>54 hrs</td>
<td>9.0 hrs</td>
</tr>
<tr>
<td>Speedup</td>
<td>1x</td>
<td>8.5x</td>
</tr>
<tr>
<td>Test time per image</td>
<td>47 secs</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>Speedup</td>
<td>1x</td>
<td>148x</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
</tr>
<tr>
<td>Test time per image with Selective Search</td>
<td>50 seconds</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Speedup</td>
<td>1x</td>
<td>26x</td>
</tr>
</tbody>
</table>
Faster R-CNN Results

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
<th>Faster R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time per image (with proposals)</td>
<td>90 seconds</td>
<td>2 seconds</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>25x</td>
<td>250x</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>95.0</td>
<td>66.5</td>
<td>66.0</td>
</tr>
</tbody>
</table>

Faster R-CNN Results

YOLO – You Only Look Once
Detection as Regression

Faster than Faster R-CNN, but not as good

Topics of the lecture:

- Problem statement
- Review of slow R-CNN
- Review of Fast R-CNN
- Review of Faster R-CNN
- Compare with other methods

Object Detection code links:

- R-CNN (Caffe + MATLAB): [GitHub](https://github.com/rbgirshick/rcnn)
 [Probably don’t use this; too slow]
- Fast R-CNN (Caffe + MATLAB): [GitHub](https://github.com/rbgirshick/fast_rcnn)
- Faster R-CNN (Caffe + MATLAB): [GitHub](https://github.com/ShaoqingRen/fasterrcnn)
- Faster R-CNN (Caffe + Python): [GitHub](https://github.com/rbgirshick/faster_rcnn)
- YOLO: [GitHub](https://github.com/y0lo)

Take Away

- Classification and detection of objects in images is approaching high quality and real-time frame rate results.
- The major breakthroughs came from:
 1. Utilizing CNN instead of classical computer vision methods
 2. Making deeper neural networks with multiple objectives
 3. Switching all stages of algorithm with one unified network (end-to-end)
- These algorithms are all available and applicable to real-world problems! Once you know how they work, you can change and adjust them to your specific research needs.
Any Questions?

THANK YOU