FINITE STATE MACHINES
FOR STRINGS OVER INFINITE ALPHABETS

DANIEL OHAYON
Danielohayon444@gmail.com
FIRST SOME DEFINITIONS

- D is an infinite alphabet.
- A D-string w is a finite sequence d_1, d_2, \ldots, d_n where each $d_i \in D$.
- $\text{dom}(w) = \{1, \ldots, |w|\}$ \hspace{1cm} $\text{val}_w(i) = d_i$
- Two special symbols to represent the beginning and end of a string are $\triangleright, \triangleleft \notin D$. And thus the extended string is $w \triangleright v \triangleleft$ where $v \in D^*$
- $\text{dom}^+(w) = \{0, \ldots, |w| + 1\}$
- $\text{val}_w(0) = \triangleright, \text{val}_w(|w| + 1) = \triangleleft$
FINITE MEMORY AUTOMATA

- AKA Register Automate
- Finite state machine
- Finite number of registers
- Each register holds a value from D
- When processing a string, it compares the symbol on the current position with values in the registers.
FINITE MEMORY AUTOMATA

- Formal Definition of Finite Memory Automata.
- A nondeterministic two-way k-register automation B over D is a tuple (Q, q_0, F, τ_0, P) where
- Q is a finite set of states.
- $q_0 \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final states.
- $\tau_0 : \{1, \ldots, k\} \rightarrow D \cup \{\triangleright, \triangleleft\}$ is the initial register assignment.
- P is a finite set of transitions of the forms $(i, q) \rightarrow (q', d)$ or $q \rightarrow (q', i, d)$. Here $i \in \{1, \ldots, k\}$, $q, q' \in Q$, $d \in \{\text{stay, left, right}\}$.
- If there are no left-transitions then the automata is one-way.
CONFIGURATION

• Given a string w, a configuration of B on w is a tuple $[j, q, \tau]$ where $j \in \text{dom}^+(w)$, $q \in Q$, $\tau: \{1, ..., k\} \to D \cup \{\triangleright, \triangleleft\}$.

• Initial configuration: $\gamma_0 := [1, q_0, \tau_0]$

• $\gamma = [j, q, \tau] \vdash \gamma' = [j', q', \tau']$ if there is a transition $(i, q) \to (q', d)$ s.t. $\tau = \tau'$, $j = j'$ or $j' = j - 1$ or $j' = j + 1$ according to d or there is a transition $q \to (q', i, d)$ s.t. $j = j'$ or $j' = j - 1$ or $j' = j + 1$ according to d and τ' is obtained from τ by setting $\tau'(i)$ to $\text{val}_w(j)$.

• We denote the transitive closure of \vdash by \vdash^*.

• A string w is accepted by B if $\exists \gamma$ s.t. $\gamma_0 \vdash^* \gamma$, and γ is an accepting configuration.

• An automation is deterministic if in each configuration at most one transition applies.
PEBBLE AUTOMATA

• Pebbles are numbered from 1 to \(k \) and pebble \(i + 1 \) can only be placed when pebble \(i \) is present on the string.
• Like wise pebble \(i \) can only be lifted when pebble \(i + 1 \) is not present.
• The highest numbered pebble present on the string acts like the head of the automation.
PEBBLE AUTOMATA

- Formal Definition: A nondeterministic two-way k-pebble automation A over D is a tuple (Q, q_0, F, T) where

 - Q is a finite set of states. q_0 is the initial state. $F \subseteq Q$ is the set of final states
 - T is a finite set of transitions of the form $\alpha \rightarrow \beta$ where
 - α is of the form (i, s, P, V, q) or (i, P, V, q) where $i \in \{1, \ldots, k\}$, $s \in D \cup \{\triangleright, \triangleleft\}$
 and $P, V \subseteq \{1, \ldots, i - 1\}$
 - β is of the form (q, d) with $q \in Q$
 and $d \in \{\text{stay}, \text{left}, \text{right}, \text{place} - \text{pebble}, \text{lift} - \text{pebble}\}$
PEBBLE AUTOMATA CONFIGURATION

• Given a string \(w \), a configuration of \(A \) on \(w \) is of the form \(\gamma = [i, q, \theta] \) where \(i \in \{1, \ldots, k\} \), \(q \in Q \), \(\theta : \{1, \ldots, i\} \to \text{dom}^+(w) \). We call \(\theta \) a pebble assignment. And \(i \) the depth of the configuration also denoted as \(\text{depth}(\gamma) \).

• The initial configuration is \(\gamma_0 = [1, q_0, \theta_0] \) where \(\theta_0(1) = 0 \).

• A transition \((i, s, P, V, p) \to \beta\) applies to a configuration \(\gamma = [j, q, \theta] \) if
 1) \(i = j \), \(p = q \)
 2) \(V = \{l < i \mid \text{val}_w(\theta(l)) = \text{val}_w(\theta(i))\} \)
 3) \(P = \{l < i \mid \theta(l) = \theta(i)\} \) and
 4) \(\text{val}_w(\theta(i)) = s \)

• A transition \((i, P, V, q) \to \beta\) applies to \(\gamma \) if (1) – (3) hold and no transition \((i, s, P, V, q) \to \beta\) applies.
PEBBLE AUTOMATA TRANSITION RELATION

- We define the transition relation $\gamma = [i, q, \theta] \vdash \gamma' = [i', q', \theta']$ as follows: iff there is a transition $\alpha \rightarrow (p, d)$ that applies to γ such that $q' = p$ and $\theta'(j) = \theta(j)$ for all $j < i$ and

- If $d = \text{stay}$ then $i' = i$ and $\theta'(i) = \theta(i)$
 - if $d = \text{left}$ then $i' = i$ and $\theta'(i) = \theta(i) - 1$
 - if $d = \text{right}$ then $i' = i$ and $\theta'(i) = \theta(i) + 1$
 - if $d = \text{place – pebble}$ then $i' = i + 1$ and $\theta'(i + 1) = \theta'(i) = \theta(i)$
 - if $d = \text{lift – pebble}$ then $i' = i - 1$

- When a PA lifts pebble i the control is transferred to pebble $i - 1$ there for even a $1D - PA$ can make several left to right sweeps.
PEBBLE AUTOMATA EXAMPLE

• $L = (d_1, ..., d_n | n \geq 0, \exists i, j \text{ s.t. } i \neq j \text{ and } d_i = d_j)$

• Our pebble automata $A = (Q, q_1, F, T)$ is a two pebble automata and defined as follows.

• $Q = \{q_1, q_2, q_\rightarrow, q_{acc}\}$, $F = \{q_{acc}\}$ and T consists of the following transitions:
 - (1) $(1, \emptyset, \emptyset, q_1) \rightarrow (q_1, \text{Right})$
 - (2) $(1, \emptyset, \emptyset, q_1) \rightarrow (q_\rightarrow, \text{Place - Pebble})$
 - (3) $(2, \{1\}, \{1\}, q_\rightarrow) \rightarrow (q_2, \text{Right})$
 - (4) $(2, \emptyset, \emptyset, q_2) \rightarrow (q_2, \text{Right})$
 - (5) $(2, \emptyset, \{1\}, q_2) \rightarrow (q_{acc}, \text{Stay})$.

• (1) – move right, (2) – decides to place a pebble, (3) – after the pebble is placed A moves to the right. (4) – continue moving right, (5) – if A sees a symbol equal to the symbol under the first pebble it moves to the final state.
We will now describe a $2N - PA$ A that accepts all words w where w is of length at least two and there exists a position i where the set of symbols occurring before i is disjoint from the set of symbols after i. For example $abb \in L(A)$ and $abab \notin L(A)$.

$A = (Q, q_0, F, T)$ where $Q = \{q_0, \ldots, q_7\}$ and $F = \{q_5\}$ and T.
PEBBLE AUTOMATA EXAMPLE

• $A = (Q, q_0, F, T)$ where $Q = \{q_0, ... , q_7\}$ and $F = \{q_5\}$ and T is:

• $(1, \triangleright, \emptyset, \emptyset, q_0) \rightarrow (q_0, \text{right})$
 $(1, \emptyset, \emptyset, q_0) \rightarrow (q_1, \text{right})$
 $(1, \lt, \emptyset, \emptyset, q_0) \rightarrow (q_2, \text{stay})$
 $(1, \emptyset, \emptyset, q_1) \rightarrow (q_1, \text{right})$
 $(1, \emptyset, \emptyset, q_1) \rightarrow (q_3, \text{place – pebble})$

• $(2, \{1\}, \{1\}, q_3) \rightarrow (q_4, \text{left})$
 $(2, \emptyset, \emptyset, q_3) \rightarrow (q_4, \text{left})$
 $(2, \triangleright, \emptyset, \emptyset, q_4) \rightarrow (q_5, \text{stay})$
 $(2, \emptyset, \emptyset, q_4) \rightarrow (q_6, \text{place – pebble})$

• $(3, \{2\}, \{2\}, q_6) \rightarrow (q_6, \text{right})$
 $(3, \emptyset, \emptyset, q_6) \rightarrow (q_6, \text{right})$
 $(3, \emptyset, \{2\}, q_6) \rightarrow (q_6, \text{right})$
 $(3, \{1\}, \{1\}, q_6) \rightarrow (q_7, \text{right})$
 $(3, \emptyset, \{1\}, q_7) \rightarrow (q_7, \text{right})$
 $(3, \emptyset, \emptyset, q_7) \rightarrow (q_4, \text{right})$
 $(2, \lt, \emptyset, \emptyset, q_7) \rightarrow (q_3, \text{lift – pebble})$
• Kaminski and Francez already showed that emptiness of $1N − RA$ is decidable.

• And that for a two $1N − RA; A, B$ with two registers it’s decidable whether $L(A) \subseteq L(B)$.

• We will now show that universality of $1N − RA$ is undecidable. This implies that equivalence (and hence containment) for arbitrary $1N − RAs$ is undecidable.

• In our proofs we use a reduction from the Post Correspondence Problem (PCP) which is well known to be undecidable.
POST CORRESPONDENCE PROBLEM (PCP)

• An instance of PCP is a sequence of pairs \((x_1, y_1), \ldots, (x_n, y_n)\), where \(x_i, y_i \in \{a, b\}^*\) for \(i = 1, \ldots, n\). This instance has a solution if there are \(m \in \mathbb{N}\) and \(\alpha_1, \ldots, \alpha_m \in \{1, \ldots, n\}\) such that \(x_{\alpha_1} \cdots x_{\alpha_m} = y_{\alpha_1} \cdots y_{\alpha_m}\).

• For example for the pairs \((a, baa), (ab, aa), (bba, bb)\) a solution to this problem would be \((3, 2, 3, 1)\) because:

\[
x_3x_1x_3x_2 = bba \cdot ab \cdot bba \cdot a = bbaabbbbaa = bb \cdot aa \cdot bb \cdot baa = y_3y_1y_3y_2
\]

• The PCP problem asks whether a given instance of the problem has a solution.
PCP ENCODING

• The input string is \(w = u\#v \) where \# is a delimiter and \(u \) and \(v \) are strings representing candidate solution \((x_{\alpha_1}, \ldots, x_{\alpha_m}; y_{\beta_1}, \ldots, y_{\beta_l})\). A candidate is a solution if:

 (1) \(l = m \) and for each \(i, \alpha_i = \beta_i \)

 (2) both strings are the same meaning the corresponding positions \(x_{\alpha_1}, \ldots, x_{\alpha_m} \) and \(y_{\beta_1}, \ldots, y_{\beta_l} \) carry the same symbol.

• Each item \(x_{\alpha_j} \) is encoded as a string of the form \(\&\gamma\alpha_j\delta_1a_1\ldots\delta_ka_k \). To achieve uniqueness all \(\gamma \) and \(\delta \) values occur only once in \(u \).

• A string \(w = u\#v \) is correct if it’s syntactically correct and

 (1) for each \(\gamma \) the number to the right of \(\gamma \) is the same in \(u \) and \(v \).

 (2) for each \(\delta \) the symbol to the right of \(\delta \) is the same in \(u \) and \(v \).
UNDECIDABILITY OF UNIVERSALITY OF A $1N - RA$

- We will describe a $1N - RA A$ that only accepts a string w iff it is not syntactically correct or does not represent a solution. Hence A accepts all inputs \iff the PCP instance has no solution. The following automation tries to guess an error in the encoding represented by w.

- (1) Is of the wrong form.

 (a) w is not of the form $w = u\#v$ or u or v is not of the form $(\&\gamma a_j \delta_1 a_1 ... \delta_k a_k)^*$

 (b) $x_i \neq a_1 ... a_k$ in some entry $\&\gamma a_j \delta_1 a_1 ... \delta_k a_k$ of u or v

- (2) The γ projections are wrong.

 (a) The first or last γ in u differs from the first γ in v.

 (b) Two γ's in u or v are the same.

 (c) γ_1 and γ_2 are successors in u but not in v.
UNDECIDABILITY OF UNIVERSALITY OF A $1N - RA$

- (3) The δ-projections are wrong.
- (4) w is syntactically correct but does not represent a solution

 (a) The α value for some γ in u is different from the corresponding β value in v.

 (b) The symbol after some δ in u is different from the corresponding symbol in v.

- Clearly w is not a solution if one of these conditions holds. In addition each single condition is easy to check and the class of languages definable by $1N - RAs$ is closed under union.

- Hence if universality of a $1N - RA$ like the one we just built was decidable then the PCP problem would be decidable and that’s a contradiction.
$L(A) = \emptyset$ IS UNDECIDABLE FOR WEAK 1D $- PA$

- **Proof:** The weak $1D - PA$ A first checks whether the input is of the desired form. Then it accepts only if the input encodes a solution of the PCP instance.
- As pebbles can only be moved to the right we keep the first pebble on the first position. A operates as follows:
- (1) Checks whether u and v are of the form $(\&\gamma \alpha_j \delta_1 a_1 \ldots \delta_k a_k)^*$ and that $x_i = a_1 \ldots a_k$ for each $\&\gamma \alpha_j \delta_1 a_1 \ldots \delta_k a_k$ in u and in v respectively.
- (2) Checks that w is syntactically correct by
 (a) All γ’s in u and v are different
 (b) The first and last γ in u equals the first and last γ in v respectively.
 (c) If γ_1 and γ_2 are successors in u then they are successors in v.
 (c) Verify that the δ’s also form an index in an analogous way.
(3) To check that w also represents a solution of the PCP instance:

(a) The α value for some γ in u is equal to the corresponding β value in v.

(b) The symbol after some δ in u is equal to the corresponding symbol in v.

• Hence the PCP instance has a solution iff $L(A)$ is non empty.
A string w is represented by the logical structure with domain $\text{dom}^+(w)$.

The natural ordering $<$ on the domain, and a function $\text{val}: \text{dom}(w) \to D$.

An atomic formula is of the form $x < y, \text{val}(x) = \text{val}(y), \text{or } \text{val}(x) = d$ for $d \in D \cup \{\geq, <\}$.

The logic MSO^* is obtained by adding quantification over unary predicates on $\text{dom}^+(w)$ and no quantification over D is allowed.

A sentence φ defines a set of strings via $L(\varphi) := \{w \in D | < w \models \varphi\}$.

As an example $\forall x \forall y (x \neq y \rightarrow \text{val}(x) \neq \text{val}(y))$
• For every formula in MSO^* (Monadic second order logic) there is a finite automation that accepts the same language. Thus every language expressed by a MSO^* formula is regular.

• Example:

$$\exists x, y \ s.t. \ x < y \land \text{val}(x) = a \land \text{val}(y) = b.$$
2D − RA ⊈ MSO*

- Proof: Consider a string \(w = u\#v \) where \(u, v \in (D - \{\#\})^* \). Define \(N_u \) and \(N_v \) as the set of symbols in \(u, v \). Denote by \(n_u \) and \(n_v \) their cardinalities.

- We will show a 2D − RA that accepts \(w = u\#v \) iff \(n_u = n_v \) while there is no such MSO* sentence.

- Definition: \(lmo_w(d) \) is the index of the leftmost occurrence of \(d \) in \(w \).

- Suppose \(N_u = \{a_1, \ldots, a_n\} \) and \(N_v = \{b_1, \ldots, b_m\} \) where \(n = n_u, m = n_v \) and for every \(i < j: lmo_u(a_i) < lmo_u(a_j) \) and in \(u \).

- To check if \(w \) is valid \(A \) starts by visiting \(lmo_u(a_1), lmo_v(b_1), \ldots, lmo_u(a_n), lmo_v(b_m) \).

- If \(a_n \) and \(b_m \) are not reached simultaneously it rejects.
AUTOMAT DESCRIPTION

• It remains to explain how the $2D - RA$ can visit $lmo_u(a_1), lmo_v(b_1), \ldots, lmo_u(a_n), lmo_v(b_m)$ in sequence.

• Clearly $lmo_u(a_1), lmo_v(b_1)$ are the first positions of u and v, respectively.

• If A has the values of a_i and b_i stored in its registers it can compute a_{i+1} and b_{i+1}.

• It first moves its head to position $lmo_w(a_i)$.

• Now it tests, for all positions $lmo_w(a_i) + j, j > 0$, starting with $j = 1$, whether they carry a leftmost occurrence of a symbol d.
AUTOMAT DESCRIPTION

• it stores d in a register, and goes from $lmo_w(a_i) + j$ to the left until it either sees a d or reaches the left end of the string.
 (1) It finds an occurrence of d then it moves to check $lmo_w(a_i) + j + 1$.
 (2) It doesn't find an occurrence of d then a_{i+1} is defined.

• Now we show that there is no MSO^* sentence.

• If we assume there is one φ^*. Let C be the set of D-symbols occurring in φ^*.

• Suppose that $u \# v$ is admissible iff
 (1) $Nu \cap Nv = \emptyset$.
 (2) Each D-symbol occurs at most once in u or v.
 (3) No symbol in C occurs in u or v.
Let φ be obtained from φ^* by replacing each occurrence of $\text{val}(x) = \text{val}(y)$ by $x = y$, and every occurrence of $\text{val}(x) = d$ s.t. $d \in C$ by $false$, if $d \neq \#$.

For every admissible string $d_1 \cdots d_n e_1 \cdots e_m$, $a_n \# a_m \models \varphi$

iff $d_1 \cdots d_n \# e_1 \cdots e_m \models \varphi$ iff $d_1 \cdots d_n \# e_1 \cdots e_m \models \varphi^*$ iff $n = m$.

Hence, $\{a^n \# a^n \mid n \in N\}$ would be MSO-definable and therefore regular. This leads to the desired contradiction.
$1N – RA \subseteq MSO^*$

- Proof: Let $B = (Q, q_0, F, \tau_0, T)$ be a $1N – RA$. Assume for the moment that no transition of B encodes a stay-move.

- We describe the construction of an MSO* formula that accepts w iff B accepts $w = w_1, ..., w_n$.

- First of all, φ guesses, for each position i of w, the state that B is in after reading w_i.

 - $i \in S_q$ means that the state of B after reading w_i is q.

- Next, φ guesses, again for each position i, which transition B applies.

 - $i \in T_t$ means that transition t is applied when B reads w_i.
Now assume that there is an accepting computation of B on w and that $(S_q)_{q \in Q}$ and $(T_t)_{t \in T}$ are chosen accordingly.

The register j content of B before reading position i can be determined as follows:

1. It is either determined from the initial register assignment τ_0
2. It is the symbol w_l, where $l = \max\{m < i \mid m \in T_t \text{ where } t \text{ is of the form } q \rightarrow (q', j, d)\}$

It is straightforward to express this in MSO^*

With the ability to determine register contents it is now easy to check that $(S_q)_{q \in Q}$ and $(T_t)_{t \in T}$ are consistent with the transition relation of B.

$1N - RA \subseteq MSO^*$
It remains to describe how we can deal with stay-transitions

Let \(r \) be the number of transitions

Call stay-transitions of the form \((i, q) \rightarrow (q', stay) \) and \(p \rightarrow (p', i, stay) \), type\(-1\) and type\(-2\) transitions,

A type\(-2\) transition can only be followed by type\(-1\) transitions

A consecutive sequence of more than \(r \) type\(-1\) transitions always contains a cycle \(\Rightarrow \) this sequence can be reduced to one containing less than \(r + 1 \) type\(-1\) transitions

\[1N − RA \subseteq MSO^* \]
So the construction sketched above can take stay-transitions into account by quantifying over sets $T_{\bar{t}}$, as opposed to sets T_t, where \bar{t} is a sequence of at most r transitions.

The latter information can then be used to check the register content.

Consequently, consistency with the transition relation can be enforced.