Finite-Memory Automata
A program input is a sequence of atomic symbols over an infinite alphabet \(\Sigma \), and a program itself consists of a specification of a finite set of variables \(v_i, i = 1, 2, \ldots, r \), and a finite sequence of (labeled) commands of the following type.

- \(v_i := \sigma \)
- read \((v_i) \)
- print \((v_i) \)
- \(v_i := v_j \)
- if \(v_i = v_j \), then go to \(k \)
- halt
Let Σ be an *infinite* alphabet and let $\#$ be a symbol not belonging to Σ. An *assignment* is a word $w_1w_2\cdots w_r \in (\Sigma \cup \{\#\})^*$ such that if $w_i = w_j$ and $i \neq j$, then $w_i = \#$. The set of all assignments of length r is denoted by $\Sigma^r\neq$.

For a word $w = w_1w_2\cdots w_r \in (\Sigma \cup \{\#\})^*$ we define the *content* of w, denoted $[w]$, by $[w] = \{w_i : i = 1, 2, \ldots, r\}$.
A finite-memory automaton is a system $A = \langle S, s, u, \rho, \mu, F \rangle$, where

- S is a finite set of states,
- $s \in S$ is the initial state,
- $u = u_1 u_2 \cdots u_r \in \Sigma^r \neq$ is the initial assignment,
- $\rho : S \to \{1, 2, \ldots, r\}$ is a partial function called the reassignment,
- $\mu \subseteq S \times \{1, 2, \ldots, r\} \times S$ is the transition relation, and
- $F \subseteq S$ is the set of final states.

The automaton A can be represented by its initial assignment and a directed graph whose vertices are states. There is an edge from p to q, if there exists an index k such that $(p, k, q) \in \mu$. Such edge is labeled k. Also, if for a vertex p the value of ρ is defined, then p is labeled $\rho(p)$.
Example Let $A = \langle \{ s, p, f \}, s, ##, \rho, \mu, \{ f \} \rangle$, where

- $\rho(s) = 1, \rho(p) = \rho(f) = 2$; and
- $\mu = \{(s, 1, s), (s, 1, p), (p, 1, f), (p, 2, p), (f, 1, f), (f, 2, f)\}$.

$L(A) = \{\sigma_1 \sigma_2 \cdots \sigma_n : \text{there exist } 1 \leq i < j \leq n \text{ such that } \sigma_i = \sigma_j\}$.

An accepting run of A on $abcbd$ is

$(s, ##), (s, a#), (p, b#), (p, bc), (f, bc), (f, bd)$.
An actual state of A is a state from S together with the content of all its registers. Thus, A has infinitely many states which are pairs (p, w), where $p \in S$ and $w \in \Sigma^r \neq \emptyset$. These are called the configurations of A. The set of all configurations of A is denoted by S^c. The pair $s^c = (s, u)$ is called the initial configuration, and the configurations with the first component in F are called final configurations. The set of final configurations is denoted by F^c.
The transition relation μ induces the following relation μ^c on $S^c \times \Sigma \times S^c$.

Let $\mathbf{v}, \mathbf{w} \in \Sigma^r \neq, \mathbf{v} = v_1v_2 \cdots v_r$ and $\mathbf{w} = w_1w_2 \cdots w_r$. Then $((p, \mathbf{v}), \sigma, (q, \mathbf{w})) \in \mu^c$ if the two following conditions are satisfied.

- If $\sigma = v_k \in [\mathbf{v}]$, then $\mathbf{w} = \mathbf{v}$ and $(p, k, q) \in \mu$.

- If $\sigma \notin [\mathbf{v}]$, then $\rho(p)$ is defined, $w_{\rho(p)} = \sigma$, for each $k \neq \rho(p)$, $w_k = v_k$, and $(p, \rho(p), q) \in \mu$.

Let $\sigma \in \Sigma^*$, $\sigma = \sigma_1\sigma_2 \cdots \sigma_n$. A run of A on σ consists of a sequence of configurations c_0, c_1, \ldots, c_n such that $c_0 = s^c$ and $(c_{i-1}, \sigma_i, c_i) \in \mu^c, i = 1, 2, \ldots, n$.

We say that A accepts σ if there exists a run c_0, c_1, \ldots, c_n of A on σ such that $c_n \in F^c$. The set of all words accepted by A is denoted by $L(A)$ and is referred to as a quasi-regular language.
Example Let $\Sigma' = \{\sigma_1, \sigma_2, \ldots, \sigma_r\}$ be an r-element subset of Σ and let $A' = \langle S, s, \mu', F \rangle$ be an ordinary finite automaton over Σ'. Consider a finite-memory automaton $A = \langle S, s, u, \rho, \mu, F \rangle$, where

- $u = \sigma_1 \sigma_2 \cdots \sigma_r$,
- the reassignment ρ is nowhere defined, and
- $(p, k, q) \in \mu$ if and only if $(p, \sigma_k, q) \in \mu'$.

Then $L(A) = L(A')$. That is, every regular language is quasi-regular.
Example Let A be the following finite-memory automaton.
Let \(n \geq 1 \), and let \(\tau_0, \tau_1, \ldots, \tau_{2n} \) be pairwise different elements of \(\Sigma \). Consider a word \(\sigma = \sigma_1 \sigma_2 \cdots \sigma_{4n+2} \), where

- \(\sigma_1 = \sigma_3 = \tau_0 \),
- \(\sigma_{4n} = \sigma_{4n+2} = \tau_{2n} \), and
- \(\sigma_{2i} = \sigma_{2i+3} = \tau_i \) for \(i = 1, 2, \ldots, 2n - 1 \).

That is, \(\sigma \) is of the form

\[
\begin{array}{ccc}
\ \\
2 & 2 & 2 \\
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Then \(\sigma \in L(A) \), but \(\sigma \) has no non-empty pattern that may be pumped.
Proposition Let $A = \langle S, s, u, \rho, \mu, F \rangle$ be an r-register finite-memory automaton and let Σ' be a finite subset of Σ. Then $L(A) \cap \Sigma'^*$ is a regular language (over Σ').

Proof Consider an ordinary finite automaton $A' = \langle S', s', \mu', F' \rangle$ over Σ' that is defined as follows.

- $S' = S^c \cap (S \times (\Sigma' \cup [u] \cup \{\#\})^r)$. Since Σ' is finite, S' is finite as well.
- $s' = (s, u)$.
- $\mu' = \mu^c \cap (S' \times \Sigma' \times S')$.
- $F' = F^c \cap S'$.

Let σ be a word over Σ'. Then each accepting run of A on σ is an accepting run of A' on σ, and vice versa. Thus, $\sigma \in L(A) \cap \Sigma'^*$ if and only if $\sigma \in L(A')$. \qed
Lemma Let $A = \langle S, s, u, \rho, \mu, F \rangle$ be a finite-memory automaton. Then for each automorphism $\iota : \Sigma \to \Sigma$, $\iota(L(A)) = L(\iota(A))$, where $\iota(A) = \langle S, s, \iota(u), \rho, \mu, F \rangle$.

Proof (sketch) We prove by induction on the length of σ that
\[(s_0, w_0), (s_1, w_1), \ldots, (s_n, w_n)\]
is a run of A on σ if and only if
\[(s_0, \iota(w_0)), (s_1, \iota(w_1)), \ldots, (s_n, \iota(w_n))\]
is a run of $\iota(A)$ on $\iota(\sigma)$.

The induction step is based on the fact that if $((p, v), \sigma, (q, w)) \in \mu^c$, then $((p, \iota(v)), \iota(\sigma), (p, \iota(w))) \in \mu^c$. \qed

Corollary (Closure under automorphisms) Let $A = \langle S, s, u, \rho, \mu, F \rangle$ be a finite-memory automaton. Then for each automorphism $\iota : \Sigma \to \Sigma$ that is an identity on $[u]$ and each $\sigma \in \Sigma^*$, $\sigma \in L(A)$ if and only if $\iota(\sigma) \in L(A)$.

Proof The result immediately follows from the lemma, because, under the conditions of the corollary, \(\iota(A) = A \). \qed
Proposition (Indistinguishability property of finite-memory automata)
Let $A = \langle S, s, u, \rho, \mu, F \rangle$ be an r-register finite-memory automaton. If $xy \in L(A)$, then there exists a subset Σ' of $[x]$ such that the number of elements of Σ' does not exceed r and the following holds.

For any $\sigma \not\in \Sigma'$ and any $\tau \not\in [y] \cup \Sigma'$, the word $x(y(\sigma/\tau))$ obtained from xy by the substitution of τ for each occurrence of σ in y is in $L(A)$.

Proof Let x be a word of length i and let $(s_0, w_0), (s_1, w_1), \ldots, (s_n, w_n)$ be an accepting run of A on xy. Let $\Sigma' = [w_i], \sigma \not\in [w_i], \text{ and } \tau \not\in [y] \cup \Sigma'$. To prove that $x(y(\sigma/\tau)) \in L(A)$, it suffices to show that $y(\sigma/\tau) \in L(A_{(s_i, w_i)})$, where $A_{(s_i, w_i)} = \langle S, s_i, w_i, \rho, \mu, F \rangle$. Let ι be the automorphism of Σ that permutes σ with τ and leaves fixed all other symbols. Then $y(\sigma/\tau) = \iota(y)$, and the result follows the above corollary, because neither σ nor τ is in $[w_i]$. \qed
Example Consider a language L that consists of all words whose last symbol is different from all others. That is,

$$L = \{\sigma_1 \sigma_2 \cdots \sigma_n : \sigma_i \neq \sigma_n, \ i = 1, 2, \ldots, n - 1\}.$$

Assume to the contrary that L is accepted by an r-register finite-memory automaton A.

Let $x = \sigma_1 \sigma_2 \cdots \sigma_r \sigma_{r+1}$ and $y = \sigma_{r+2}$, where all σ_is are pairwise different. Then $xy \in L = L(A)$.

Let Σ' be a subset of $[x]$ provided by the indistinguishability property of finite-memory automata. Since the number of elements of Σ' does not exceed r, there exists an $i \in \{1, 2, \ldots, r + 1\}$ such that $\sigma_i \notin \Sigma'$. Since $[x] \cap [y] = \emptyset$, $\sigma_i \notin [y] \cup \Sigma'$. Therefore, by the indistinguishability property of finite-memory automata, $x(y(\sigma_{r+2}/\sigma_i)) \in L(A)$. However in the last word σ_i appears both in the ith and the last positions which contradicts the assumption $L(A) = L$.

14
Proposition If an r register finite memory automaton A accepts a word of length n, then it accepts a word of length n that contains at most r pairwise different symbols.

Proof (sketch) Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in L(A)$ contain more than r pairwise different symbols, and let

$$r = (s_0, w_0), (s_1, w_1), \ldots, (s_n, w_n),$$

$$w_i = w_i, 1 \cdots w_i, r, i = 0, 1, \ldots, n,$$ be a run of A on σ. Let i be the minimal integer such that $\sigma_i \not\in [w_{i-1}]$ and $w_{i-1}, \rho(s_{i-1}) \neq \#$.

Let ι be an automorphism of Σ such that interchanges σ_i with $w_{i-1}, \rho(s_{i-1})$ and leaves fixed all other symbols. Then

$$r' = (s, u), (s_1, w_1), \ldots, (s_{i-1}, w_{i-1}), (s_i, \iota(w_i)), \ldots, (s_n, \iota(w_n))$$

is an accepting run of A on $\sigma' = \sigma_1 \cdots \sigma_{i-1} \iota(\sigma_i \cdots \sigma_n)$. \qed
Example Let

\[L = \{ \sigma_1 \sigma_2 \cdots \sigma_n : \text{there exist } 1 \leq i < j \leq n \text{ such that } \sigma_i = \sigma_j \}. \]

Then \(\bar{L} \) consists of all words in which each symbol appears at most one time. We contend that \(\bar{L} \) is not quasi-regular.

Assume to the contrary that \(\bar{L} \) is accepted by an \(r \)-register finite-memory automaton \(A \). Since \(\Sigma \) is infinite, there exists a word \(\sigma \in L(A) \) of length \(r + 1 \). However, \(A \) must accept a word \(\sigma' \) of length \(r + 1 \) that contains at most \(r \) pairwise different symbols. Therefore, some symbol of \(\Sigma \) appears in \(\sigma' \) more than one time, in contradiction with the assumption \(L(A) = \bar{L} \).

Thus, quasi-regular sets are not closed under complementation.
Theorem The emptiness problem for quasi-regular languages is decidable.

Proof Let $A = \langle S, s, u, \rho, \mu, F \rangle$, be an r-register finite-memory automaton and let $\Sigma' = [u] \cup \{\sigma_1, \ldots, \sigma_\ell\}$ be an r-element subset of Σ such that $[u] \cap \{\sigma_1, \ldots, \sigma_\ell\} = \emptyset$. We contend that $L(A) \neq \emptyset$ if and only if $L(A) \cap \Sigma'^* \neq \emptyset$.

The “if” part is immediate. Let $L(A) \neq \emptyset$. There exists a subset $\Sigma'' = [u] \cup \{\tau_1, \ldots, \tau_\ell\}$ of Σ such that $L(A) \cap \Sigma''^* \neq \emptyset$. Let ι be an automorphism of Σ that interchanges σ_i with τ_i, $i = 1, 2, \ldots, \ell$, and leaves fixed all other symbols. Then,

$$L(A) \cap \Sigma'^* = L(A) \cap \iota(\Sigma''^*) = \iota(L(A) \cap \Sigma''^*).$$

Since $L(A) \cap \Sigma''^* \neq \emptyset$, $L(A) \cap \Sigma'^* \neq \emptyset$ as well. \hfill \Box

Theorem For a two-register finite-memory automaton A' and for a finite-memory automaton A'' it is decidable whether $L(A'') \subseteq L(A')$.

17
Closure properties of quasi-regular languages

Theorem The quasi-regular sets are closed under union, intersection, concatenation, and iteration (Kleene star).

Example Let $\Sigma = \{\sigma_1, \sigma_2, \ldots\}$, $\Sigma' = \{\tau_1, \tau_2, \ldots\}$, and $\iota: \Sigma^* \rightarrow \Sigma'^*$ be a homomorphism defined by $\iota(\sigma_{3i}) = \iota(\sigma_{3i-1}) = \tau_{2i}$ and $\iota(\sigma_{3i-2}) = \tau_{2i-1}$, $i = 1, 2, \ldots$. Let A be the following finite-memory automaton over Σ.

![Finite-memory automaton diagram]

Let s be the initial state, and f be the final state.
Then
\[L(A) = \{ \sigma_i \sigma_j : i \neq j \} \]
and
\[\iota(L(A)) = \{ \tau_i \tau_j : i \neq j \} \cup \{ \tau_{2i} \tau_{2i} : i = 1, 2, \ldots \}. \]

Assume that \(\iota(L(A)) \) is quasi-regular, and let \(A' \) be a finite-memory automaton over \(\Sigma' \) such that \(L(A') = \iota(L(A)) \). Let \(i \) be such that neither \(\tau_{2i} \) nor \(\tau_{2i+1} \) appear in the initial assignment of \(A' \), and let \(\iota' \) be an automorphism of \(\Sigma' \) that interchanges \(\tau_{2i} \) with \(\tau_{2i+1} \) and leaves fixed all other symbols. Since \(\tau_{2i} \tau_{2i} \in \iota(L(A)) \),
\[\tau_{2i+1} \tau_{2i+1} \in \iota(L(A)) \left(= \{ \tau_i \tau_j : i \neq j \} \cup \{ \tau_{2i} \tau_{2i} : i = 1, 2, \ldots \} \right), \]
which is impossible.

Thus, quasi-regular languages are not closed under homomorphisms.
Example Let $\Sigma = \{\sigma_1, \sigma_2, \ldots\}$, $\Sigma' = \{\tau_1, \tau_2, \ldots\}$, and $\iota: \Sigma \to \Sigma'^*$ be the homomorphism defined by $\iota(\sigma_{3i}) = \iota(\sigma_{3i-1}) = \tau_{2i}$ and $\iota(\sigma_{3i-2}) = \tau_{2i-1}$, $i = 1, 2, \ldots$. Let A' be a finite-memory automaton over Σ' defined by the following diagram.

![Diagram]

$initialization$
Then,

\[L(A') = \{ \tau_i \tau_i : i = 1, 2, \ldots \} \]

and

\[\iota^{-1}(L(A')) = \bigcup_{i=1}^{\infty} \{ \sigma_i \sigma_i, \sigma_{3i-1} \sigma_{3i}, \sigma_{3i} \sigma_{3i-1} \}. \]

Assume that \(\iota^{-1}(L(A')) \) is quasi-regular, and let \(A \) be a finite-memory automaton over \(\Sigma \) such that \(L(A) = \iota^{-1}(L(A')) \). Let \(i \) be such that neither \(\sigma_{3i-2} \) nor \(\sigma_{3i-1} \) appears in the initial assignment of \(A \) and let \(\iota' \) be an automorphism of \(\Sigma' \) that interchanges \(\tau_{3i-2} \) and \(\tau_{3i-1} \) and leaves fixed all other symbols. Since \(\sigma_{3i-1} \sigma_{3i} \in \iota^{-1}(L(A')) \),

\[\sigma_{3i-2} \sigma_{3i} \in \iota^{-1}(L(A')) (= \bigcup_{i=1}^{\infty} \{ \sigma_i \sigma_i, \sigma_{3i-1} \sigma_{3i}, \sigma_{3i} \sigma_{3i-1} \}), \]

which is impossible.

Thus, quasi-regular languages are not closed under inverse homomorphisms.
Remark. Under a very weak assumption it can be shown that any class L of languages over an infinite alphabet which is defined by a set of machines having a finite description is not closed under either homomorphisms or inverse homomorphisms.

First we observe that, since the set of machines having a finite description is countable, L is countable.

We prove that L is not closed under homomorphisms under the assumption that $\Sigma = \{\sigma_1, \sigma_2, \ldots\} \in L$.

Since L is countable, there exists an infinite subset $L = \{\sigma_{j_1}, \sigma_{j_2}, \ldots\}$ of Σ such that $L \not\subseteq L$. Let $\iota : \Sigma \to \Sigma$ be defined by $\iota(\sigma_i) = \sigma_{j_i}$, $i = 1, 2, \ldots$. Then $\iota(\Sigma) = L$, which shows that L is not closed under homomorphisms.

We prove that L is not closed under inverse homomorphisms under the assumption that $\{\sigma_1\} \in L$.

Let $\iota' : \Sigma \to \Sigma$ be defined by $\iota'(\sigma) = \sigma_1$, if $\sigma \in L$; and $\iota'(\sigma) = \sigma_2$, otherwise. Then $\iota'^{-1}(\{\sigma_1\}) = L$, which shows that L is not closed under inverse homomorphisms.
Example Consider the language

\[L = \{ \sigma_1 \sigma_2 \cdots \sigma_n : \sigma_i \neq \sigma_1, \ i = 2, 3, \ldots, n \} . \]

That is, \(L \) consists of all words whose first symbol is different form all other symbols, and is accepted by the following finite-memory automaton.

The reversal \(L^R \) of \(L \) language consists of all words whose last symbol is different from all others, which is not quasi-regular.
Deterministic finite-memory automata

An r-register finite-memory automaton $A = \langle S, s, u, \rho, \mu, F \rangle$ is called deterministic if ρ is everywhere defined and for each $p \in S$ and each $k = 1, 2, \ldots, r$ there exists exactly one $q \in S$ such that $(p, k, q) \in \mu$. That is, ρ is a function from S into $\{1, 2, \ldots, r\}$ and μ can be thought of as a function from $S \times \{1, 2, \ldots, r\}$ into S.

Theorem The languages accepted by deterministic finite-memory automata are closed under complementation, union and intersection.
Example Consider the following deterministic finite-memory automaton.

The language L accepted by this automaton consists exactly of those words where the first symbol appears twice or more:

$$L = \{\sigma_1\sigma_2\cdots\sigma_n : \text{for some } i = 2, 3, \ldots, n, \ \sigma_i = \sigma_1\}.$$
Therefore,

\[L = \{ \sigma_1 \sigma_2 \cdots \sigma_n : \sigma_i \neq \sigma_1, i = 2, 3, \ldots, n \}, \]

implying

\[L^R = \{ \sigma_1 \sigma_2 \cdots \sigma_n : \sigma_i \neq \sigma_1, i = 2, 3, \ldots, n \}^R. \]

Were \(L^R \) be deterministic, its complement

\[\{ \sigma_1 \sigma_2 \cdots \sigma_n : \sigma_i \neq \sigma_1, i = 2, 3, \ldots, n \}^R. \]

would also be deterministic, in contradiction with the previous example.
Example Consider the following deterministic finite-memory automaton.

![Finite-memory automaton diagram]

This automaton accepts the language

\[L = \{ \sigma_1 \sigma_2 \cdots \sigma_n : \sigma_1 = \sigma_n, n > 1 \} \].
Assume $L^* = L(A)$, where $A = \langle S, s, \mathbf{u}, \rho, \mu, F \rangle$ is an r-register deterministic finite-memory automaton. Let $\sigma_1, \sigma_2, \ldots, \sigma_{r+1}$ be pairwise different elements of Σ. Then, for each $i = 1, 2, \ldots, r + 1$,

$$\sigma_1 \sigma_1 \sigma_2 \sigma_1 \sigma_3 \cdots \sigma_1 \sigma_r \sigma_1 \sigma_{r+1} \sigma_i \in L^*.$$

There is a unique configuration (p, w) that A can enter after reading

$$\sigma_1 \sigma_1 \sigma_2 \sigma_1 \sigma_3 \cdots \sigma_1 \sigma_r \sigma_1 \sigma_{r+1}.$$

Then, for each $i = 1, 2, \ldots, r + 1$, $A_{(p,w)}$ must accept σ_i. Since $A_{(p,w)}$ has r registers, for some $i = 1, 2, \ldots, r + 1$, $\sigma_i \notin [w]$.

Let τ be a symbol different from any of the σ_is and let ι be an automorphism of Σ that interchanges τ and σ_i and leaves fixed all other symbols. Then $A_{(p,w)}$ accepts τ. Therefore A accepts $\sigma_1 \sigma_1 \sigma_2 \sigma_1 \sigma_3 \cdots \sigma_1 \sigma_r \sigma_1 \sigma_{r+1} \tau$, which is impossible, because no suffix of that word belongs to L.

Deterministic two-way finite-memory automata

A two-way deterministic finite-memory automaton is a system $A = \langle S, s, u, \rho, \mu, F \rangle$, where S, s, u, ρ, and F are as in a deterministic finite-memory automaton. Inputs to A are of the form σ, where $\not\in \Sigma$ and $\sigma \in \Sigma$, and the transition function μ maps $S \times \{1, 2, \ldots, r\}$ into $S \times \{-1, 1\}$.

The meaning of μ is as follows. If $\mu(p, k) = (q, -1)$, then in state p, scanning the input symbol stored in the kth register, A enters the state q and moves left.

Similarly, if $\mu(p, k) = (q, 1)$, then in state p, scanning the input symbol stored in the kth register, A enters state q and moves right.
Example Let $L = \{\sigma_1\sigma_2\cdots \sigma_n : \sigma_i \neq \sigma_j \text{ for } i \neq j\}$. Observe that $\sigma_1\sigma_2\cdots \sigma_n \in L$ if and only if for each $i = 2, 3, \ldots, n$, $\sigma_1\sigma_2\cdots \sigma_i \in L$.

Given an input $\sigma = \sigma_1\sigma_2\cdots \sigma_n$, our automaton first stores σ_1 in the first register and then for each $i = 2, 3, \ldots, n$ verifies whether $\sigma_1\sigma_2\cdots \sigma_i \in L$. For such verification the automaton performs the following sequence of moves.

After “accepting” $\sigma_1\sigma_2\cdots \sigma_{i-1}$, the automaton checks whether $\sigma_i = \sigma_1$. If the equality holds, then the automaton enters a “dead state”.

If $\sigma_i \neq \sigma_1$, the automaton stores σ_i in the second register and starts moving left from σ_i towards σ_1 trying to find out whether for some $j = 2, 3, \ldots, i-1$, $\sigma_j = \sigma_i$. If such a j exists, then $\sigma \not\in L$ and the automaton enters a dead state. Otherwise the automaton will eventually reach σ_1.

Since the automaton already “knows” from the previous verification that $\sigma_1\sigma_2\cdots \sigma_{i-1} \in L$, arriving to σ_1 indicates that it is at the left end of σ and $\sigma_1\sigma_2\cdots \sigma_i \in L$.

After arriving at the left end of the input, the automaton turns right and moves to σ_i. From σ_i it moves right, enters a final state, and repeats the same procedure starting from σ_{i+1}, etc..