BUTTERFLY
OPENING THE CHRYSLIS: ON THE REAL REPAIR PERFORMANCE OF MSR CODES
Presented by: Matan Liram
Table of Contents

1. Motivation
2. Tradeoffs
3. Butterfly Construction
4. Hadoop Implementation
5. Ceph Implementation
6. Evaluations
7. Summary
Motivation

■ Large distributed storage systems use erasure codes to reliably store data

■ Erasure codes reduce storage overhead

■ But, for repairing a lost disk, common codes require reading all data disks, and transferring them through network

■ In Facebook, each day ~20-100 nodes, 15TB each, fail
Motivation

- Theoretically, MSR (Minimum Storage Regenerating) codes optimally reduce this repair burden, as we have seen in Zig-Zag.
- MSR codes have not been implemented in real-world distributed storage systems.
- In the paper, they show how to vertically integrate butterfly with the storage system, resulting in good performance.
Coding Classes

- MDS (Minimum Distance Separable) codes are **storage optimal**, in order to repair r disk failures, we need r parity disks.
- LRC (Locally Repairable Codes) **reduce** the number of accessed nodes during a repair, at the cost of optimal storage (MDS) property.
- RGC (Regeneration codes) reduce amount of data transferred during a repair, by using more “helpers”, devices contacted during repair.
- MSR (Minimum Storage Regeneration) codes minimize repair traffic without storage overhead.
- **Systematic MSR codes** also provide optimal disk I/O (Could you think why?)
Table of Contents

1. Motivation
2. Tradeoffs
3. Butterfly Construction
4. Hadoop Implementation
5. Ceph Implementation
6. Evaluations
7. Summary
Erasure Codes Tradeoffs

- Erasure codes *decrease storage overhead* compared to replication, at a *higher repair cost* including: excessive computation, disk I/O, network bandwidth.

- Increased repair costs *reduce* MTTDL and therefore *data durability*.

- LRC offers an optimal trade-off between storage overhead, fault tolerance, number of nodes involved in repairs, but the codes class is not storage optimal.

- LRC is widely used today, for example in Windows Azure, but is not storage optimal and doesn’t achieve minimum repair traffic.

\[
\frac{k}{n} \leq \frac{1}{\prod_{i=1}^{t+1} (1 + \frac{i}{r})}
\]

In LRC \((n=?, k=10, r=5, t=2)\) with 2 erasures: \(n \geq 10 \cdot 1.2 \cdot 1.1 = 14\).
MSR Tradeoffs

- Most known MSR codes require storage overhead at least $\times 2$.
 - otherwise requiring an exponentially growing field or exponential number of code sub-elements, tradeoff with optimal rebuild
- Fine grain read accesses allow locality in cache but cause disk inefficiencies due to small sub-elements (large k vs. small k)
- Computationally cheap (xor operations), but update complexity is high
- Large object takes a lot of computation time and DRAM, against a small object which consumes a lot of communication, tradeoff so they overlap
MSR System Design Tradeoffs

- Tradeoffs coming from the following choices will be analyzed in 2 butterfly implementations, Hadoop and Ceph:
 - *Online encoding or batch job encoding*
 - *Per-object encoding or object groups encoding*
 - *Open-interface or monolithic interface*
Table of Contents

1. Motivation
2. Tradeoffs
3. Butterfly Construction
4. Hadoop Implementation
5. Ceph Implementation
6. Evaluations
7. Summary
Butterfly Construction

- $k\alpha$-dimensional data vectors
- $r(=2)$: number of parity vectors/chunks
 - $n = k + r$
 - A chunk consists of a $\alpha(=8)$-dimensional data vector and is stored in a separate node

- MDS code with $r = 2$, MSR (rebuilding ratio $\frac{1}{2}$)

- Over a small field $GF(2)$, thus requiring only XOR and AND operations
Butterfly Encoder

- Denote D_k a $2^{k-1} \times k$ boolean matrix for $k \geq 2$, which represents a data object to be encoded.

$$D_k = \begin{bmatrix} \textbf{a} & \textbf{A} \\ \textbf{b} & \textbf{B} \end{bmatrix}$$

- \textbf{a} and \textbf{b} are column vectors of length 2^{k-2}

- Let D_k^j be the jth column of D_k, $j \in \{0, 1, \ldots, k - 1\}$

- For parities $H = \mathcal{H}(D_k), B = \mathcal{B}(H_k)$ define:

 - $k = 2$:
 $$\mathcal{H} \begin{bmatrix} c & a \\ d & b \end{bmatrix} = \begin{bmatrix} c \oplus a \\ d \oplus b \end{bmatrix} \quad \mathcal{B} \begin{bmatrix} c & a \\ d & b \end{bmatrix} = \begin{bmatrix} d \oplus a \\ c \oplus a \oplus b \end{bmatrix}$$

 - $k > 2$:
 $$\mathcal{H}(D_k) = \left[P_{k-1} \left[P_{k-1} b \oplus \mathcal{H}(P_{k-1} B) \right] \right]$$
 $$\mathcal{B}(D_k) = \left[P_{k-1} \left[a \oplus \mathcal{H}(A) \oplus B(P_{k-1} B) \right] \right]$$
Butterfly Encoder

- Define:
 - $k = 2$:
 \[
 \mathcal{H}\left(\begin{bmatrix} c & a \\ d & b \end{bmatrix}\right) = \begin{bmatrix} c \oplus a \\ d \oplus b \end{bmatrix} \quad \mathcal{B}\left(\begin{bmatrix} c & a \\ d & b \end{bmatrix}\right) = \begin{bmatrix} d \oplus a \\ c \oplus a \oplus b \end{bmatrix}
 \]
 - $k > 2$:
 \[
 \mathcal{H}(D_k) = \begin{bmatrix} a \oplus \mathcal{H}(A) \\ P_{k-1}\left[b \oplus \mathcal{H}(P_{k-1}B)\right] \end{bmatrix} \quad \mathcal{B}(D_k) = \begin{bmatrix} P_{k-1}[a \oplus \mathcal{H}(A) \oplus \mathcal{B}(P_{k-1}B)] \\ P_{k-1}[b \oplus \mathcal{B}(A)] \end{bmatrix}
 \]

- The result will be a regular xor parity.

- $D_k = \begin{bmatrix} a & A \\ b & B \end{bmatrix}$

- P_k is a $2^{k-1} \times 2^{k-1}$ vertical flip transform:
 \[
 P_k \cdot \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \rightarrow \begin{bmatrix} d \\ c \\ b \\ a \end{bmatrix}
 \]

Double vertical flip is used to simultaneously compute \mathcal{H} and \mathcal{B} over the same data.

Encoding D_k by encoding A and $P_{k-1}B$.

Note: The image contains a table-like structure with elements a, b, c, d and their transformations under the operations \mathcal{H} and \mathcal{B}.
Encoding Example

\[\mathcal{H}(D_k) = \left[a \oplus \mathcal{H}(A) \right] \]

\[\mathcal{B}(D_k) = \left[P_{k-1} b \oplus \mathcal{B}(P_{k-1}B) \right] \]

\[
\begin{array}{cccc|c|c}
D_4^3 & D_4^2 & D_4^1 & D_4^0 & H & B \\
\hline
d_0 & c_0 & b_0 & a_0 & d_0 \oplus c_0 \oplus b_0 \oplus a_0 & d_7 \oplus c_3 \oplus b_1 \oplus a_0 \\
d_1 & c_1 & b_1 & a_1 & d_1 \oplus c_1 \oplus b_1 \oplus a_1 & d_6 \oplus c_2 \oplus b_0 \oplus a_1 \\
d_2 & c_2 & b_2 & a_2 & d_2 \oplus c_2 \oplus b_2 \oplus a_2 & d_5 \oplus c_1 \oplus b_1 \oplus a_1 \oplus b_3 \oplus a_3 \oplus a_2 \\
d_3 & c_3 & b_3 & a_3 & d_3 \oplus c_3 \oplus b_3 \oplus a_3 & d_4 \oplus c_0 \oplus b_0 \oplus a_0 \oplus b_2 \oplus a_3 \\
d_4 & c_4 & b_4 & a_4 & d_4 \oplus c_4 \oplus b_4 \oplus a_4 & d_3 \oplus c_3 \oplus b_3 \oplus a_3 \oplus d_2 \oplus c_2 \oplus b_2 \oplus a_2 \oplus c_1 \oplus b_1 \oplus a_1 \oplus b_3 \oplus a_2 \\
d_5 & c_5 & b_5 & a_5 & d_5 \oplus c_5 \oplus b_5 \oplus a_5 & d_2 \oplus c_2 \oplus b_2 \oplus a_2 \oplus d_1 \oplus c_1 \oplus b_1 \oplus a_1 \oplus b_3 \oplus a_2 \\
d_6 & c_6 & b_6 & a_6 & d_6 \oplus c_6 \oplus b_6 \oplus a_6 & d_1 \oplus c_1 \oplus b_1 \oplus a_1 \oplus b_3 \oplus a_2 \\
d_7 & c_7 & b_7 & a_7 & d_7 \oplus c_7 \oplus b_7 \oplus a_7 & d_0 \oplus c_0 \oplus b_0 \oplus a_0 \oplus d_2 \oplus c_2 \oplus b_2 \oplus a_2 \oplus d_1 \oplus c_1 \oplus b_1 \oplus a_1 \oplus b_3 \oplus a_2 \\
\end{array}
\]

\[D_k = \begin{bmatrix} a \\ b \end{bmatrix} \]

\[\mathcal{H} \left(\begin{bmatrix} c \\ d \end{bmatrix} \right) = \begin{bmatrix} c \oplus a \\ d \oplus b \end{bmatrix} \]

\[\mathcal{B} \left(\begin{bmatrix} c \\ d \end{bmatrix} \right) = \begin{bmatrix} d \oplus a \\ c \oplus a \oplus b \end{bmatrix} \]
Theorem 1: (MDS) The Butterfly code can decode the original data matrix when any two columns are missing, hence it is an MDS code.

Proof by induction on k:
- For $k = 2$, can be easily verified
- i.e. let $H = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$, $B = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ and data $\begin{pmatrix} c \\ d \\ a \\ b \end{pmatrix}$
- Then, if both data nodes fail $b = h_1 \oplus b_2$, $a = h_1 \oplus h_2 \oplus b_1 \oplus b_2$ and etc.
Butterfly Decoder

■ Theorem 1: (MDS) The Butterfly code can decode the original data matrix when any two columns are missing, hence it is an MDS code.

■ Proof by induction on k:
 - Assuming it gives an MDS code for $k - 1$, for $k > 2$, we will prove that the construction with k columns is also MDS.

1. The two parity nodes are lost, **re-encode**

2. One parity and one data column, decode data column, then re-encode. If H failed, if D_k^{k-1}, XORing. Otherwise, get $\mathcal{B}(P_{k-1}B)$ by induction (2 failures), then get $\mathcal{B}(A), H(A)$ and by induction (1 failure)

3. Two non leftmost data columns are lost:
 - $a \oplus h_1 = H(A); P_{k-1}b \oplus b_1 = \mathcal{B}(A)$ - inductively recover upper half
 - Similarly, generate by XORing $H(P_{k-1}B)$ and $\mathcal{B}(P_{k-1}B)$

$$H(D_k) = \begin{bmatrix} a \oplus H(A) \\ P_{k-1}[P_{k-1}b \oplus H(P_{k-1}B)] \end{bmatrix} \quad \mathcal{B}(D_k) = \begin{bmatrix} P_{k-1}b \oplus \mathcal{B}(A) \\ P_{k-1}[a \oplus H(A) \oplus \mathcal{B}(P_{k-1}B)] \end{bmatrix}$$
Butterfly Decoder

■ Theorem 1: (MDS) The Butterfly code can decode the original data matrix when any two columns are missing, hence it is an MDS code.

■ Proof by induction on k:
 - Assuming it gives an MDS code for $k - 1$, for $k > 2$, we will prove that the construction with k columns is also MDS.

4. The leftmost column along with another data column D_{kj} are lost.
 - Notice that $B(P_{k-1}B) = h_1 \oplus P_{k-1}b_2$. We can easily get $H(P_{k-1}B)$ from H and decode the bottom half of D_{kj}.
 - From h_2 we can decode b.
 - From b_1 we get $B(A)$ and in the same manner get upper half of D_{kj} and a.

$$H(D_k) = \left[P_{k-1}[a \oplus H(A)] \right]$$

$$B(D_k) = \left[P_{k-1}[a \oplus H(A) \oplus B(P_{k-1}B)] \right]^{17}$$
Single Column Regeneration

- **Theorem 2**: (optimal regeneration) In the case of one failure, the lost column can be regenerated by communicating an amount of data equal to $\frac{1}{2}$ of the remaining data.
 - *If the lost column is not the butterfly parity*, the amount of communicated data is equal to the amount read from surviving disks (optimal I/O).

- At first I’ll present the algebraic expressions for choosing the elements to send from each disk, then give an intuition

1. One column $D^j_k \in \{D^1_k, ..., D^{k-1}_k\}$ is lost. Every remaining column will transfer elements in position i such that $\left\lfloor \frac{i}{2j-1} \right\rfloor \equiv 4 \; 0 \; \lor \; 3$
Single Column Regeneration

Theorem 2: (optimal regeneration)

1. One column $D_k^j \in \{D_k^1, ..., D_k^{k-1}\}$ is lost. Every remaining column will transfer elements in position i such that $\left\lfloor \frac{i}{2^{j-1}} \right\rfloor \equiv 4 \mod 3$

Notice that the indices we read correspond to butterfly locations that do not require the additional elements.

<table>
<thead>
<tr>
<th>D_4^3</th>
<th>D_4^2</th>
<th>D_4^1</th>
<th>D_4^0</th>
<th>H</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>c_0</td>
<td>b_0</td>
<td>a_0</td>
<td>$d_0 \oplus c_0 \oplus b_0 \oplus a_0$</td>
<td>$d_7 \oplus c_3 \oplus b_1 \oplus a_0$</td>
</tr>
<tr>
<td>d_1</td>
<td>c_1</td>
<td>b_1</td>
<td>a_1</td>
<td>$d_1 \oplus c_1 \oplus b_1 \oplus a_1$</td>
<td>$d_6 \oplus c_2 \oplus b_0 \oplus a_1$</td>
</tr>
<tr>
<td>d_2</td>
<td>c_2</td>
<td>b_2</td>
<td>a_2</td>
<td>$d_2 \oplus c_2 \oplus b_2 \oplus a_2$</td>
<td>$d_5 \oplus c_1 \oplus b_1 \oplus a_1 \oplus b_3 \oplus a_3 \oplus a_2$</td>
</tr>
<tr>
<td>d_3</td>
<td>c_3</td>
<td>b_3</td>
<td>a_3</td>
<td>$d_3 \oplus c_3 \oplus b_3 \oplus a_3$</td>
<td>$d_4 \oplus c_0 \oplus b_0 \oplus a_0 \oplus b_2 \oplus a_3$</td>
</tr>
<tr>
<td>d_4</td>
<td>c_4</td>
<td>b_4</td>
<td>a_4</td>
<td>$d_4 \oplus c_4 \oplus b_4 \oplus a_4$</td>
<td>$d_3 \oplus c_3 \oplus b_3 \oplus a_3 \oplus c_7 \oplus b_7 \oplus a_7 \oplus b_5 \oplus a_4$</td>
</tr>
<tr>
<td>d_5</td>
<td>c_5</td>
<td>b_5</td>
<td>a_5</td>
<td>$d_5 \oplus c_5 \oplus b_5 \oplus a_5$</td>
<td>$d_2 \oplus c_2 \oplus b_2 \oplus a_2 \oplus c_6 \oplus b_6 \oplus a_6 \oplus b_4 \oplus a_4 \oplus a_5$</td>
</tr>
<tr>
<td>d_6</td>
<td>c_6</td>
<td>b_6</td>
<td>a_6</td>
<td>$d_6 \oplus c_6 \oplus b_6 \oplus a_6$</td>
<td>$d_1 \oplus c_1 \oplus b_1 \oplus a_1 \oplus c_5 \oplus b_7 \oplus a_7 \oplus b_6 \oplus a_6$</td>
</tr>
<tr>
<td>d_7</td>
<td>c_7</td>
<td>b_7</td>
<td>a_7</td>
<td>$d_7 \oplus c_7 \oplus b_7 \oplus a_7$</td>
<td>$d_0 \oplus c_0 \oplus b_0 \oplus a_0 \oplus c_4 \oplus b_6 \oplus a_7$</td>
</tr>
</tbody>
</table>
Theorem 2: (optimal regeneration)

2. Column D_k^0 is lost. The columns $D_k^1, \ldots, D_k^{k-1}, H$ will transfer even indexed elements and B will transfer odd indexed elements.

<table>
<thead>
<tr>
<th>D_4^3</th>
<th>D_4^2</th>
<th>D_4^1</th>
<th>D_4^0</th>
<th>H</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>c_0</td>
<td>b_0</td>
<td>a_0</td>
<td>d_7 ⊕</td>
<td>d_7 ⊕</td>
</tr>
<tr>
<td>d_1</td>
<td>c_1</td>
<td>b_1</td>
<td>a_1</td>
<td>d_6 ⊕</td>
<td>d_6 ⊕</td>
</tr>
<tr>
<td>d_2</td>
<td>c_2</td>
<td>b_2</td>
<td>a_2</td>
<td>d_5 ⊕</td>
<td>d_5 ⊕</td>
</tr>
<tr>
<td>d_3</td>
<td>c_3</td>
<td>b_3</td>
<td>a_3</td>
<td>d_4 ⊕</td>
<td>d_4 ⊕</td>
</tr>
<tr>
<td>d_4</td>
<td>c_4</td>
<td>b_4</td>
<td>a_4</td>
<td>d_3 ⊕</td>
<td>d_3 ⊕</td>
</tr>
<tr>
<td>d_5</td>
<td>c_5</td>
<td>b_5</td>
<td>a_5</td>
<td>d_2 ⊕</td>
<td>d_2 ⊕</td>
</tr>
<tr>
<td>d_6</td>
<td>c_6</td>
<td>b_6</td>
<td>a_6</td>
<td>d_1 ⊕</td>
<td>d_1 ⊕</td>
</tr>
<tr>
<td>d_7</td>
<td>c_7</td>
<td>b_7</td>
<td>a_7</td>
<td>d_0 ⊕</td>
<td>d_0 ⊕</td>
</tr>
</tbody>
</table>

$B(D_{k-1}) = \begin{pmatrix}
 d_6 \oplus c_2 \oplus b_0 \\
 d_4 \oplus c_0 \oplus b_0 \oplus b_2 \\
 d_2 \oplus c_2 \oplus b_2 \oplus c_6 \oplus b_6 \oplus b_4 \\
 d_0 \oplus c_0 \oplus b_0 \oplus c_4 \oplus b_6
\end{pmatrix}$
Single Column Regeneration

- **Theorem 2: (optimal regeneration)**

3. **First parity column** H is lost. All the remaining columns transfer their lower halves. Butterfly parity XORed with data from D_{k-1} will provide upper rows of H.

<table>
<thead>
<tr>
<th>D_4^3</th>
<th>D_4^2</th>
<th>D_4^1</th>
<th>D_4^0</th>
<th>H</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>c_0</td>
<td>b_0</td>
<td>a_0</td>
<td>$d_0 \oplus c_0 \oplus b_0 \oplus a_0$</td>
<td>$d_7 \oplus$</td>
</tr>
<tr>
<td>d_1</td>
<td>c_1</td>
<td>b_1</td>
<td>a_1</td>
<td>$d_1 \oplus c_1 \oplus b_1 \oplus a_1$</td>
<td>$d_6 \oplus$</td>
</tr>
<tr>
<td>d_2</td>
<td>c_2</td>
<td>b_2</td>
<td>a_2</td>
<td>$d_2 \oplus c_2 \oplus b_2 \oplus a_2$</td>
<td>$d_5 \oplus$</td>
</tr>
<tr>
<td>d_3</td>
<td>c_3</td>
<td>b_3</td>
<td>a_3</td>
<td>$d_3 \oplus c_3 \oplus b_3 \oplus a_3$</td>
<td>$d_4 \oplus$</td>
</tr>
<tr>
<td>d_4</td>
<td>c_4</td>
<td>b_4</td>
<td>a_4</td>
<td>$d_4 \oplus c_4 \oplus b_4 \oplus a_4$</td>
<td>$d_3 \oplus c_3 \oplus b_3 \oplus a_3 \oplus$</td>
</tr>
<tr>
<td>d_5</td>
<td>c_5</td>
<td>b_5</td>
<td>a_5</td>
<td>$d_5 \oplus c_5 \oplus b_5 \oplus a_5$</td>
<td>$d_2 \oplus c_2 \oplus b_2 \oplus a_2 \oplus$</td>
</tr>
<tr>
<td>d_6</td>
<td>c_6</td>
<td>b_6</td>
<td>a_6</td>
<td>$d_6 \oplus c_6 \oplus b_6 \oplus a_6$</td>
<td>$d_1 \oplus c_1 \oplus b_1 \oplus a_1 \oplus$</td>
</tr>
<tr>
<td>d_7</td>
<td>c_7</td>
<td>b_7</td>
<td>a_7</td>
<td>$d_7 \oplus c_7 \oplus b_7 \oplus a_7$</td>
<td>$d_0 \oplus c_0 \oplus b_0 \oplus a_0 \oplus$</td>
</tr>
</tbody>
</table>
Theorem 2: (optimal regeneration)

4. Second parity column B is lost. D_k^{k-1} will transfer its top half, H will transfer its bottom half, $D_k^j, j \neq k - 1$ will transfer their contribution to bottom part of B.

<table>
<thead>
<tr>
<th>D_4^3</th>
<th>D_4^2</th>
<th>D_4^1</th>
<th>D_4^0</th>
<th>H</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>c_0</td>
<td>b_0</td>
<td>a_0</td>
<td>$d_0 \oplus c_0 \oplus b_0 \oplus a_0$</td>
<td>$d_7 \oplus c_3 \oplus b_1 \oplus a_0$</td>
</tr>
<tr>
<td>d_1</td>
<td>c_1</td>
<td>b_1</td>
<td>a_1</td>
<td>$d_1 \oplus c_1 \oplus b_1 \oplus a_1$</td>
<td>$d_6 \oplus c_2 \oplus b_0 \oplus a_1$</td>
</tr>
<tr>
<td>d_2</td>
<td>c_2</td>
<td>b_2</td>
<td>a_2</td>
<td>$d_2 \oplus c_2 \oplus b_2 \oplus a_2$</td>
<td>$d_5 \oplus c_1 \oplus b_1 \oplus a_1 \oplus b_3 \oplus a_3 \oplus a_2$</td>
</tr>
<tr>
<td>d_3</td>
<td>c_3</td>
<td>b_3</td>
<td>a_3</td>
<td>$d_3 \oplus c_3 \oplus b_3 \oplus a_3$</td>
<td>$d_4 \oplus c_0 \oplus b_2 \oplus a_0 \oplus b_2 \oplus a_3$</td>
</tr>
<tr>
<td>d_4</td>
<td>c_4</td>
<td>b_4</td>
<td>a_4</td>
<td>$d_4 \oplus c_4 \oplus b_4 \oplus a_4$</td>
<td>$d_3 \oplus c_3 \oplus b_3 \oplus a_3 \oplus c_7 \oplus b_7 \oplus a_7 \oplus b_5 \oplus a_4$</td>
</tr>
<tr>
<td>d_5</td>
<td>c_5</td>
<td>b_5</td>
<td>a_5</td>
<td>$d_5 \oplus c_5 \oplus b_5 \oplus a_5$</td>
<td>$d_2 \oplus c_2 \oplus b_2 \oplus a_2 \oplus c_6 \oplus b_6 \oplus a_6 \oplus b_4 \oplus a_4 \oplus a_5$</td>
</tr>
<tr>
<td>d_6</td>
<td>c_6</td>
<td>b_6</td>
<td>a_6</td>
<td>$d_6 \oplus c_6 \oplus b_6 \oplus a_6$</td>
<td>$d_1 \oplus c_1 \oplus b_1 \oplus a_1 \oplus c_5 \oplus b_7 \oplus a_7 \oplus a_6$</td>
</tr>
<tr>
<td>d_7</td>
<td>c_7</td>
<td>b_7</td>
<td>a_7</td>
<td>$d_7 \oplus c_7 \oplus b_7 \oplus a_7$</td>
<td>$d_0 \oplus c_0 \oplus b_0 \oplus a_0 \oplus c_4 \oplus b_6 \oplus a_7$</td>
</tr>
</tbody>
</table>

1. XORing data will give bottom part of B.
2. Butterfly of $D_k^j, j \neq k - 1$ and XOR with bottom half of H will recover top part of B.
Table of Contents

1. Motivation
2. Tradeoffs
3. Butterfly Construction
4. Hadoop Implementation
5. Ceph Implementation
6. Evaluations
7. Summary
Hadoop Filesystem

- Designed for managing large-scale computation/storage systems, suitable for **large** amounts of data
- One of the most widely used distributed storage systems in industry and academics
- **Namenode** – metadata and location, “centralized” architecture
 - **Limited metadata**
 - **Single point of failure**
- **Datanode** – actual files
- Facebook implemented Reed-Solomon, XORbas codes in a module named HDFS-RAID
Erasure Coding in HDFS

- HDFS-RAID does encoding as a batch-job
 - Low write latency
 - Additional storage (think why)

- Iterative version implemented to avoid Java recursion and non-explicit memory management

- Facebook HDFS as a starting point
 - RaidNode encodes (creates parity files)
 - BlockFixer fixes corrupted data

- Files are replicated, RaidNode schedules coding jobs, take k newly inserted chunks and generates r parity chunks, stored back in HDFS
Butterfly Implementation in HDFS

- Encoding and repair follow a 4-step protocol:
 1. Determine the location of the data blocks:
 To calculate file offset of the k-block message we use the **position** of the symbol being built and its **index**
 2. Fetch the data to the primary node - asynchronously
 3. Encoding/decoding computation is performed in the primary node
 4. Created data is committed back to HDFS
Butterfly Implementation in HDFS

- Tuning code column size improves data locality for cache, and communication can be overlapped by computation.
- JNI can increase optimizations, but benefits shadowed by cost of data movements between Java and JNI modules.
- Loop unrolling and reordering didn’t increase performance as expected.
- Memory management outweighs benefits of computation optimizations.
- Parallelize in OpenMP fashion, avoid column collocating.
Communication Protocol and Memory in HDFS

- If the data stream is broken, client assumes communication error and starts re-establishing connection with datanode.

- To solve the problem, the Datanode packs the data contagiously into a buffer and sends to the client which extracts it.

- In Reed-Solomon, \((k + 2) \times 64MB\) DRAM required for decoding, buffered communication requires additional space.

- Multiple sequential decode tasks require garbage-collecting, if frequent and not properly scheduled, they cause performance degradation.
 - They implement memory pool, performance benefits of up to 15%.
 - Allocated during task setup, reused by computation threads.
Ceph’s Distributed Object Store

- Ceph is an open-source distributed storage system with a decentralized design, no single point of failure
- Self-healing and self-managing, guarantee high-availability and consistency with little human intervention
- **RADOS** is its core component, formed of **daemons** and client libs, allowing partial and complete R/W and snapshots
- **Monitor** - maintain consistent cluster metadata
- **OSD** (node) - object storage device
Ceph Notation

- **Pool** - a Ceph's logical partition for storing objects
- **Placement Group (PG)** - A sub-pool, to which an object can be written, pool decides it using CRUSH ruleset. OSDs elect a primary OSD in it
- **CRUSH** – an algorithm, gets an object id and returns a vector of nodes/PG ids. Uses the CRUSH ruleset which is a storage tree
The client sends a RadosGW object using PUT/GET.

The RadosGW object is being striped and converted into small **Ceph objects (~4MB each)**.

The objects are partitioned to **data chunks** and erasure coded to **parity chunks online**.

The chunks (which are represented as files) are sent to the corresponding **OSDs** using the **CRUSH map**.

The **MDS** gets the files’ metadata.
Butterfly Codes in Ceph

- Larger stripe size requires more memory, increases write latency
- On the other hand, coarser computation and read operations benefit performance of erasure codes
 - Small elements incur high network and HDD overhead
 - 2^{k-1} elements per code column require larger stripes
- Erasure code plugin infrastructure, separated from OSD
- Although, designed for traditional and LRC codes ➡ No support in array codes!
Butterfly Implementation in Ceph

- The given infrastructure includes:
 - `encode()`: returns a list of n encoded chunks
 - `minimum_to_decode()`: gets chunk ID and available chunks list, returns IDs of required chunks
 - `decode()`: given a list of chunk IDs, decodes

- All in resolution of chunks, can’t access elements!
- They implemented as an external DLL the `repair()` function which works in resolution of elements
Butterfly Implementation in Ceph

- Butterfly is implemented as an external C lib and compiled as a new RADOS plug-in.
- High level of algorithmic and implementation optimizations, due to programming language (C++).
- Uses the recursive approach which simplifies implementation, it also gives better data locality.
 - Better encoding throughput.
Table of Contents

1. Motivation
2. Tradeoffs
3. Butterfly Construction
4. Hadoop Implementation
5. Ceph Implementation
6. Evaluations
7. Summary
Experimental Setup

- 12 Dell R720 servers, each with one OS HDD and seven 4TB HDDs, total 336TB
- Infiniband network, 56Gbps – communication faster than HDDs
- 12 storage nodes, 1 metadata server
- 2 code constructions, $k = 5$, $k = 7$, storage overhead of $1.4 \times$, $1.3 \times$ respectively, 16 and 64 elements in a column accordingly
 - Catches impact of IO granularity on repair performance
- Compare Butterfly against Reed-Solomon with the same k
Evaluation method

1. Store 20K objects of 64MB, total 1.8TB
 - each node stores 150GB for $k=5$, 137GB for $k=7$
 (redundancy overhead)

2. Power off a single storage server and let the 11 remaining servers repair the lost data
 - log CPU, IO, network BW.
Figure 5: Repair throughput aggregated across all nodes involved in the repair process. Each system configuration we run with RS and Butterfly, with $k = 5$ and $k = 7$.
Repair Throughput in HDFS

- For HDFS, 12 reduce tasks per node, 1 per core (would be better to put 11 tasks so that background jobs don’t interfere)
- Steep fall in throughput towards the end, because of high parallelization
- RS results caused by load imbalance, out of scope in the paper
- In HDFS, k=5, ~500MB/s, 1.6x higher than RS. Not twice since
 - Higher contention in butterfly, causing HDD randomness
 - Vector-based communication copy-to-buffer overhead
- k=7, difference is ~2x between BF and RS.
 - Reducing network contention outweighs HDD drawbacks
Repair Throughput in Ceph

- 4MB stripe size creates elements of 50KB, 9KB for $k=5,7$
- Small elements cause inefficient HDD utilization, additional CPU operations. Leads to inconsistent repair throughput
- 64MB stripe size results in elements of sizes 800KB, 143KB for $k=5,7$ respectively
- Better disk utilization and repair throughput
Figure 6: Average CPU utilization per server. Each system configuration we run with RS and Butterfly, with $k = 5$ and $k = 7$. The graphs represent the average utilization across all 12 nodes involved in the repair process.
CPU Utilization in Hadoop

- Measuring capability of BF/RS to possibly share in-node resources with other applications
- Results are averaged across all nodes involved in computation
- For HDFS, BF utilization is higher by 3-4x for both k values
 - Since RS waits more for network IO partially
 - BF spends x2.1, x1.7 more CPU cycles for k=5,7 resp.
 - Strongly caused by Java, because of small granularity, but no slice access to buffer in Java
CPU Utilization in Ceph

- For Ceph stripe size of 4MB, k=5, elements are ~50KB
 - Fine granularity computation and communication causes unpredictable CPU utilization
 - Same applies for k=7

- CPU utilization for RS is lower compared to Butterfly but unstable
 - Memory management, function calls, cache misses cause that

- For 64MB stripe, lower and predictable CPU utilization
 - Cache-aware implementation achieves utilization comparable to RS
 - ~2-3% utilization for both codes, both k configurations
Network Traffic

Figure 7: The aggregate amount (across all 11 nodes included in the repair process) of network traffic and IOs during the repair process. We observe RS and Butterfly with $k = 5$ and $k = 7$.

- Optimal bars represent lower bound on traffic
- Optimal+1 represents minimum + single HDFS block, from HDFS-RAID implementation
- Optimal+1 matches RS HDFS traffic
- In HDFS Butterfly close to theoretical minimum, different because of metadata
In Ceph, overhead is higher, for 4MB blocks
 - Small chunks being transferred between nodes and per-message overhead.

For 64MB blocks, overhead increases with k because of reduced message size
- *on-line* approach reduces size of encoded messages

Figure 7: The aggregate amount (across all 11 nodes included in the repair process) of network traffic and IOs during the repair process. We observe RS and Butterfly with $k = 5$ and $k = 7$.
Storage Traffic - Reads

- Traffic is recorded from all HDDs
- HDFS-Butterfly achieves nearly optimal read traffic, with metadata
- HDFS-RS close to optimal+1
- Ceph-Butterfly disk I/O is smaller for k=5
 - Small I/O sizes cause misaligned reads
 - Read-ahead interferes
- Large stripes cause read overhead to nullify

Figure 7: The aggregate amount (across all 11 nodes included in the repair process) of network traffic and IOs during the repair process. We observe RS and Butterfly with $k=5$ and $k=7$.
For both systems and code configurations, writes amount exceeds optimal by ~2x.

Ceph allows updates of stored data, relies on journaling:
- Journal co-located with data: write traffic is doubled
- Ceph load-balancing on the same server affect only disk I/O
- In HDFS, intermediate local file causes 2x write

Figure 7: The aggregate amount (across all 11 nodes included in the repair process) of network traffic and IOs during the repair process. We observe RS and Butterfly with $k = 5$ and $k = 7$.
Table of Contents

1. Motivation
2. Tradeoffs
3. Butterfly Construction
4. Hadoop Implementation
5. Ceph Implementation
6. Evaluations
7. Summary
Summary

- Since we didn’t mention in evaluation, degraded reads will be the same as in Reed-Solomon

- According to CPU utilization measurements, MSR codes over GF(2) achieve low CPU usage and are a good candidate for multi-user environment
 - *Programming language is important*
 - *Relatively coarse data chunks are necessary*

- Carefully implemented, MSR codes can reduce repair network traffic by 2x compared to traditional erasure codes
 - *System design that avoids fine-grain communication is necessary.*

- In practical usage, Microsoft Azure and Facebook Xorbas use LRC code family, which require additional storage overhead
Summary

- Provided answers to the following questions:
 1. *Can the theoretical reduction in repair traffic translate to actual performance improvement*
 2. *In what way system design affects MSR code repair performance*

- Show that MSR reduce network traffic and I/O during repairs in a practical system
- However, encoding/decoding performance depends on system design, memory allocation, etc.
 - HDFS experiences CPU overhead because of Java memory mgmt.
 - On-line encoding causes high access latency due to fragmentation
 - Batch encoding achieves better performance but reduces storage efficiency (intermediate buffer)
References

The End
Butterfly Construction

- Butterfly code is over $GF(2)$, requires only XOR, AND operations
- This paper claims to be the first to show an achievable performance of MSR codes
- Let:
 - k – number of systematic chunks
 - r – number of parity chunks, $n = k + r$
 - Each chunk consists of a α-dimensional data vector and is stored in a separate node