Introduction to Machine Learning
236756
Nir Ailon

Lecture 11:
Probabilistic Models
Most of the Course So Far:
Discriminative Approach

• (Unknown) distribution D over $\mathcal{X} \times \mathcal{Y}$
• We only cared about $\Pr[Y = y|X = x]$
 • Shorthand notation: $\Pr[Y|X]$
• This allows us to predict
 • E.g. in binary case, given $x \in \mathcal{X}$

$$h(x) = \begin{cases}
1 & \Pr[Y = 1|X = x] > \frac{1}{2} \\
0 & \text{otherwise}
\end{cases}$$

“Bayes Optimal”
ERM Can Sometimes Be Viewed as Discriminative Approach for a "Made Up" Probabilistic Method

• Linear regression alternative interpretation:
 • \((Y|X = x) \sim N(w \cdot x, 1) \)
 • Choose \(w \) minimizing \(-\log \prod_{i=1}^{m} f_w(y_i|x_i)\)
 • \(f_w(y|x) = \frac{1}{\sqrt{2\pi}} e^{- (y - w \cdot x)^2 / 2} \)

• Logistic regression alternative interpretation:
 • \(Y \) binary
 • \((Y|X = x) \sim \text{sgn} (\text{logistic}(w \cdot x, \gamma)) \)
 • Choose \(w \) minimizing \(-\text{LogLikelihood}...\)

• Some questions:
 • Does hinge loss have a probabilistic interpretation?
 • What about regularization?
Should We Care About $\Pr[X]$?

- Assume \mathcal{X} discrete
- Applying Bayes rule:
 \[
 \Pr[Y = y | X = x] = \frac{\Pr[Y = y \land X = x]}{\Pr[X = x]}
 \]

 More simply:
 \[
 \Pr[Y = y | X = x] \propto \Pr[X = x | Y = y] \Pr[Y = y]
 \]

- Generative approach: Estimate $\Pr[X|Y], \Pr[Y]$
 implies estimating $\Pr[Y|X]$
Why Not Generative Approach

• Assume $\mathcal{X} = \{0,1\}^n$, $\mathcal{Y} = \{0,1\}$

• In general need exponentially many parameters to learn $P[X|Y]$

• “When solving a given problem, try to avoid a more general problem as an intermediate step”

/Vladimir Vapnik
Why Generative Approach?

• Distribution might come from parametric family. Notation:
 \(\Pr[X, Y|\Theta], \Pr[X|Y, \Theta], \Pr_\Theta[X, Y], \Pr_\Theta[X|Y] \)
 • Parallel with course so far:
 Think of parameter space as concept class

• Might be easy to learn parameters
 • Sample complexity
 • Computational complexity

• Learning process that generates \(X \) might help us for future prediction problems on same data
Stats 101: Maximum Likelihood Estimator (MLE)

• Given independent draws x_1, \ldots, x_m of distribution from family with parameter Θ

• Likelihood of x_1, \ldots, x_m is function of Θ defined as
 \[L(x_1 \ldots x_m; \Theta) = Pr_\Theta[x_1 \ldots x_m] \]

• Maximum likelihood estimator defined as
 \[\hat{\Theta} = \arg\max_{\Theta} L(x_1 \ldots x_m; \Theta) \]

• Equivalently (and usually more conveniently):
 \[\hat{\Theta} = \arg\max_{\Theta} \log L(x_1 \ldots x_m; \Theta) \]
Example: MLE For Biased Coin

- Coin with $\Theta = \text{Pr}[\text{HEADS}]$
- Given $x_1 \ldots x_m$ what is MLE $\hat{\Theta}$?
- Answer:
 $$\hat{\Theta} = \frac{1}{m} \#\{i : x_i = \text{HEADS}\}$$
- Proof:
 $$\log \text{Pr}_\Theta[x_1 \ldots x_m] = \#\text{HEADS} \cdot \log \Theta + \#\text{TAILS} \cdot \log(1 - \Theta)$$
- Derive wrt Θ and equate with 0

- Note: Can easily "overfit"
 If Θ small then w.p. $(1 - \Theta)^m$ will see all 0’s and get $-\infty$ in expression. Will get back to this later...
MLE for Continuous R.V.’s

- Replace probability with density
- E.g. Gaussian with θ = (μ, σ)

\[Pr_θ[X = x] = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2 / 2\sigma^2} \]

\[L(x_1 \ldots x_m; θ) = -\frac{1}{\sigma \sqrt{2\pi}} \sum (x_i - μ)^2 - m \cdot \log \sigma \sqrt{2\pi} \]

- MLE \(\hat{θ} = (\hat{μ}, \hat{σ}) \) given by

\[\hat{μ} = \frac{1}{m} \sum x_i \quad \hat{σ} = \sqrt{\frac{1}{m} \sum (x_i - \hat{μ})^2} \]
Naïve Bayes Approach

• Assume $X = \{0,1\}^n, Y = \{0,1\}$
• Remember from Bayes rule:
 \[\Pr[y|x] \propto \Pr[x|y] \Pr[y] = \Pr[x, y] \]
• Can’t learn $\Pr[x|y]$ for all $(x, y) \in \{0,1\}^{n+1}$
• Let’s assume

\[
\Pr[X = x|Y = y] = \prod_{j=1}^{n} \Pr[X[j] = x[j]|Y = y]
\]

\[\Rightarrow h(x) = \arg\max_{y\in\{0,1\}} \log \Pr[y|x] \]
\[= \arg\max_{y} \log \Pr[x|y] \Pr[y] \]
\[= \arg\max_{y} \log P[y] + \sum \Pr[x[j]|y] \]

• Number of parameters = $2n + 1$ only!
Naïve Bayes Classifier
(Binary Case)

• Using "biased coin" probability estimation:
 • For each $j \in [n]$ estimate
 • $\theta_0[j] = \Pr[X[j] = 1|Y = 0]$
 • $\theta_1[j] = \Pr[X[j] = 1|Y = 1]$
 • Estimate $\Theta = \Pr[Y = 1]$

• Using last slide: We make prediction $h(x) = 1$ iff
 • $\log \Pr[1|x] > \log \Pr[0|x]$
 $\iff \log \Pr[x, 1] - \log \Pr[x, 0] > 0$
 $\iff \log \hat{\Theta} + \sum (x[j] \log \hat{\Theta}_1[j] + (1 - x[j]) \log (1 - \hat{\Theta}_1[j]))$
 - $\log (1 - \hat{\Theta}) - \sum (x[j] \log \hat{\Theta}_0[j] + (1 - x[j]) \log (1 - \hat{\Theta}_0[j])) > 0$

It’s a linear model!
Naïve Bayes Classifier (Gaussian Case)

- X continuous
- For simplicity assume $Y \in \{0,1\}$
- $(X[j] | Y = y) \sim N(\mu_{jy}, \sigma_j)$
 - Estimate the μ’s and the σ’s from the data
- $\forall j \neq j'; X[j], X[j']$ independent conditioned on Y (naïveté)

$h(x) = \arg\max_y \log \Pr[y|x]$
$= \arg\max_y \log \Pr[y] + \log \Pr[x|y]$
$= \arg\max_y \log \Pr[y] + \log \Pr[x|y] - \log \Pr[y] - \log \Pr[x|\bar{y}]$
$= \arg\max_y \log \frac{\Pr[y]}{\Pr[\bar{y}]} + \log \frac{\Pr[x|y]}{\Pr[x|\bar{y}]}$
$= \arg\max_y \log \frac{\Pr[y]}{\Pr[\bar{y}]} + \sum_{j=1}^m \left(-\frac{(x_j - \mu_{jy})^2}{\sigma_j^2} + \frac{(x_j - \mu_{j\bar{y}})^2}{\sigma_j^2} \right)$
$= \arg\max_y c + \sum_{j=1}^m 2(x - \mu_{jy})x_j / \sigma_j^2$

It’s a linear model!
(Gaussian) Naïve Bayes vs Linear Regression

• Both models predict using a linear model
• Both models choose linear coefficients by minimizing squared loss
 • Naïve Bayes fits $X|Y$ (assuming conditional indep.)
 • Generative!
 • Linear Regression fits $Y|X$
 • Discriminative!
Linear Discriminant Analysis (LDA)

• $X \in \mathbb{R}^n$

• If $X|Y$ assumed Gaussian, we saw that conditional independence of the coordinates gives rise to $O(n)$ parameters

• More generally, a vector Gaussian has $O(n^2)$ parameters
 • The expectation $\mu = (\mu[1], \ldots, \mu[n]) \in \mathbb{R}^n$
 • The covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$
 • Positive-(Semi)Definite

• Estimating μ, Σ from data can be done similarly for 1d Gaussians

• Conditional independence = Diagonal Σ
LDA

- Assume same covariance Σ conditioned on all y
- Different expectation vectors μ_y
- $\Pr[X = x|Y = y] = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^\frac{1}{2}} \exp\left\{-\frac{1}{2} (x - \mu_y)^T \Sigma^{-1} (x - \mu_y) \right\}$
- Will predict $h(x) = 1$ iff
 $$\log \left(\frac{\Pr[Y = 1] \Pr[x|Y = 1]}{\Pr[Y = 0] \Pr[x|Y = 0]} \right) > 0$$
- (Assuming $\Pr[Y = 1] = \Pr[Y = 0] = \frac{1}{2}$), iff:
 $$\frac{1}{2} (x - \mu_0)^T \Sigma^{-1} (x - \mu_0) - \frac{1}{2} (x - \mu_1)^T \Sigma^{-1} (x - \mu_1) > 0$$
- Iff $\langle w, x \rangle + b > 0$, where
 $$w = (\mu_1 - \mu_0)^T \Sigma^{-1} \quad b = \frac{1}{2} (\mu_0^T \Sigma^{-1} \mu_0 - \mu_1^T \Sigma^{-1} \mu_1)$$

Assuming binary Y and $\Pr[Y = 1] = \Pr[Y = 0] = \frac{1}{2}$, MLE estimation: LDA equivalent to linear regression

It's a linear model!
Bayesian Reasoning

• Until now we thought of the distribution parameter(s) Θ as an unknown that we want to estimate optimally using MLE

• Reminder: This approach easily overfits
 • If you saw 3 HEADS and 0 TAILS, MLE ``thinks” TAILS should never appear (``The Black Swan” phenomenon)

• How do we fix this?

• In Bayesian Reasoning we think of Θ itself as a r.v.

• $\Pr[\Theta]$: “Prior Distribution”
 • Chosen by learner before learning
 • Samples $x_1 \ldots x_m$ independent only conditionally on Θ
Bayesian Priors vs SRM

• Imposing a prior can be used to assign more weight to less complex models, less weight to complex models ⇒ Prefer simpler models

• Gaussian prior on $\Theta \in \mathbb{R}^n$
 • $-\text{LogLikelihood} \equiv L_2$ regularization

• Laplace prior on $\Theta \in \mathbb{R}^n$ ($f(x) \propto e^{-|x|}$)
 • $-\text{LogLikelihood} \equiv L_1$ regularization
Bayesian Reasoning

- \(\Pr[x|x_1 \ldots x_m] = \sum_\Theta \Pr[x|\Theta, x_1 \ldots x_m] \Pr[\Theta|x_1 \ldots x_m] \)

- \(= \sum_\Theta \Pr[x|\Theta] \Pr[\Theta|x_1 \ldots x_m] \)

- \(= \sum_\Theta \Pr[x|\Theta] \frac{\Pr[x_1 \ldots x_m|\Theta] \Pr[\Theta]}{\Pr[x_1 \ldots x_m]} \)

- \(= \sum_\Theta \Pr[x|\Theta] \frac{\Pr[\Theta] \prod \Pr[x_i|\Theta]}{\Pr[x_1 \ldots x_m]} \)

- \(\propto \sum_\Theta \Pr[x|\Theta] \Pr[\Theta] \prod \Pr[x_i|\Theta] \)

- Example:

 - \(\Pr[HEADS|\Theta] = \Theta, \ \Theta \sim Unif([0,1]) \)

 - \(\Pr[HEADS|x_1 \ldots x_m] \propto \int \Theta \cdot \Theta^{\#HEADS} (1 - \Theta)^{\#TAILS} d\Theta \)

 - Solution (integration by parts):

 - \(\Pr[HEADS|x_1 \ldots x_m] = \frac{\#HEADS+1}{m+2} \)
Difficulties in Bayes Reasoning

• Often $\Pr[x|x_1 \ldots x_m]$ has no closed form

• Possible solutions:
 • Can try to find a point estimate Θ
 • MAP (Maximum A-Posteriori)
 • Take $\hat{\Theta} = \arg\max_{\Theta} \Pr[\Theta|x_1 \ldots x_m]$ (The distribution “mode”)
 • Note: This is not the same as MLE!
 • Take $\hat{\Theta} = E[\Theta|x_1 \ldots x_m]$
 • Take $\hat{\Theta} = median[\Theta|x_1 \ldots x_m]$
MAP

• Advantage:
 • An optimization problem – Often easier to solve

• Disadvantages:
 • Imposes “fake certainty”
 • Unlike mean/median, “Mode” doesn’t mean “typical” (especially in skewed distributions)
 • Sensitive to parametrization
 • If $\Psi = f(\Theta)$, $\hat{\Psi}$ a MAP for $P[\Psi]$, $\hat{\Theta}$ a MAP for $P[\Theta]$, then in general it is not true that $\hat{\Psi} = f(\hat{\Theta})$
Summary

• Generative vs. Discriminative
 • ERM is discriminative, often probabilistic
 • Generative allows us to leverage $\Pr[X]$ (if we trust it)
 • Parametric families simplify model, reduce number of parameters
 • MLE approach finds $\arg\max_{\theta} \Pr[\text{observation}]$
 • Discriminative concentrates on $\Pr[Y|X]$ which is often what we really care about. More appropriate if we don’t trust our knowledge of $\Pr[X]$

• Naïve Bayes yields a linear predictor
 • The “generative version” of Linear Regression

• LDA yields a linear predictor
 • Requires same covariance for all class conditionals
 • Unlike Naïve Bayes, doesn’t require diagonal covariance (=cond. Indep.)

• Some models introduce latent variables

• Bayes reasoning assumes prior “belief” on parameters, predicts by updating “belief” based on observations
 • Often difficult to compute in closed form
 • Point estimates can be used instead
 • MAP/expectation/median