Introduction to Machine Learning
236756

Prof. Nir Ailon
Based on original presentation by Prof. Nati Srebro-Bartom

Lecture 8: Boosting
“Weak” vs “Strong” Learning

• Recall definition of (realizable) PAC learning of \mathcal{H} using rule $A(\cdot)$:
 For any \mathcal{D} s.t. $\inf_{h \in \mathcal{H}} L_D(h) = 0$, and any $\epsilon, \delta > 0$, using $m(\epsilon, \delta)$ sample,
 $\forall_{S \sim \mathcal{D}(m(\epsilon, \delta))} L_D(A(S)) < \epsilon$

• $A(\cdot)$ is a **weak learner** for \mathcal{H} if:
 There exists $\epsilon < \frac{1}{2}, \delta < 1, m$, s.t. for any \mathcal{D} with $\inf_{h \in \mathcal{H}} L_D(h) = 0$,
 $\forall_{S \sim \mathcal{D}(m)} L_D(A(S)) < \epsilon$
 (e.g. $\epsilon = 0.49$ and $1 - \delta = 0.01$)

• If \mathcal{H} is weakly learnable, is it also strongly learnable?
 • Yes: \mathcal{H} is weakly learnable \Rightarrow VCdim(\mathcal{H})$<\infty$ \Rightarrow \mathcal{H} is (strongly) learnable

• If we have access to an (efficient) weak learner $A(\cdot)$, can we use it to build an (efficient) strong learner?
Example: Weak Learning with a Weak Class

• $\mathcal{X} = \mathbb{R}^2, \mathcal{H} =$ axis aligned rectangles

• Decision stumps: $\mathcal{B} = \left\{ \left[s \cdot x[i] < \theta \right] | i = 1, 2, \ s = \pm 1, \ \theta \in \mathbb{R} \right\}$

• Claim: For any \mathcal{D}, if $\exists h \in \mathcal{H} L_D(h) = 0 \implies \exists h \in \mathcal{B} L_D(h) \leq \frac{3}{7} < 0.429$

• Since $\text{VCdim}(\mathcal{B}) = 3$, with $m = m_{VC}(D = 3, \epsilon = 0.001, \delta = 0.9)$:

 w.p. ≥ 0.1 over $S \sim \mathcal{D}^m$: $L_D(\text{ERM}_B(S)) < 0.43$

• Conclusion:

 $\text{ERM}_B(\cdot)$ is a weak learner for \mathcal{H} with $\epsilon = 0.43 < 0.5$ and $\delta = 0.9 < 1$
The Boosting Problem

• Boosting the Confidence:
 If the learning algorithm works only with some very small fixed probability \(1 - \delta_0\) (e.g. \(1 - \delta_0 = 0.01\)), can we construct a new algorithm that works with arbitrarily high probability \(1 - \delta\) (for any \(\delta > 0\))?

• Boosting the error:
 If the learning algorithm only returns a predictor that is guaranteed to be slightly better than chance, i.e. has error \(\epsilon_0 = \frac{1}{2} - \gamma < \frac{1}{2}\) (for some fixed \(\gamma > 0\)), can we construct a new algorithm that achieves arbitrarily low error \(\epsilon\)?
The Boosting Problem

• Boosting the Confidence:
 If the learning algorithm works only with some very small fixed probability \(1 - \delta_0\) (e.g. \(1 - \delta_0 = 0.01\)), can we construct a new algorithm that works with arbitrarily high probability \(1 - \delta\) (for any \(\delta > 0\))?
 • For any \(\epsilon > 0\), with \(m_0(\epsilon)\) samples, \(\forall S \sim D^{m_0(\epsilon)} L_D(A(S)) < \epsilon\)

• Boosting the error:
 If the learning algorithm only returns a predictor that is guaranteed to be slightly better than chance, i.e. has error \(\epsilon_0 = \frac{1}{2} - \gamma < \frac{1}{2}\) (for some fixed \(\gamma > 0\)), can we construct a new algorithm that achieves arbitrarily low error \(\epsilon\)?
Boosting the Confidence

• For any δ:

1. For $i=1..k$:
 \[k = \frac{\log 2/\delta}{\log 1/\delta_0} \]
 Collect m_0 independent samples S_i
 \[h_i = A(S_i) \]

2. Collect $m_{val} = \frac{4 \log(4k/\delta)}{\epsilon^2}$ additional independent samples S_{val}

3. Return \(\hat{h} = \arg \min_{h_1,...,h_k} L_{S_{val}}(h_i) \)

• Claim: w.p. $\geq 1 - \delta$, $L(\hat{h}) \leq \epsilon_0 + \epsilon$

• Total samples used: $O \left(m_0(\epsilon_0) \cdot \log \frac{1}{\delta} + \frac{\log \frac{1}{\delta}}{\epsilon^2} \right)$

• E.g. if $\epsilon_0 = \frac{1}{2} - \gamma < 1/2$, take $\epsilon = \frac{\gamma}{2}$ so that $\epsilon_0 + \epsilon = \frac{1}{2} - \frac{\gamma}{2} < \frac{1}{2}$
Boosting the Error

If a learning algorithm only returns a predictor that is guaranteed to be slightly better than chance, i.e. has error $\epsilon_0 = \frac{1}{2} - \gamma < \frac{1}{2}$ (for some $\gamma > 0$), can we construct a new algorithm that achieves arbitrarily low error ϵ?

- Posed (as a theoretical question) by Valiant and Kearns, Harvard 1988
- Solved by MIT student Robert Schapire, 1990
- AdaBoost Algorithm by Schapire and Yoav Fruend, AT&T 1995
AdaBoost

- **Input:** Training set \(S = \{(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\} \)
- **Weak Learner** \(A \), which will be applied to *distributions* \(D \) over \(S \)
 - If thinking of \(A(S') \) as accepting a sample \(S' \):
 each \((x, y) \in S'\) is set to \((x_i, y_i)\) w.p. \(D_i \) (independently and with replacements)
 - Usually easier to think of \(A \) as operating on a weighted sample, with weights \(D_i \)
- **Output:** hypothesis \(h \) with arbitrarily small \(L_S(h) \)
 - We’ll worry about \(L_D(h) \), which is what we really care about, later

Initialize \(D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m} \right) \)

For \(t=1, \ldots, T \):

- \(h_t = A(D^{(t)}) \)
- \(\epsilon_t = L_{D^{(t)}}(h_t) = \frac{1}{m} \sum_i D_i^{(t)} \cdot [h_t(x_i) \neq y_i] \)
- \(w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1 \right) \)
- \(D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-w_t y_i h_t(x_i))}{\sum_j D_j^{(t)} \exp(-w_t y_j h_t(x_j))} \)

Output: \(h_S(x) = \text{sign}(\sum_{t=1}^T w_t h_t(x)) \)
AdaBoost: Weight Update

Initialize $D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m} \right)$

For $t=1, \ldots, T$:

- $h_t = A(D^{(t)})$
- $\epsilon_t = L_{D^{(t)}}(h_t) = \frac{1}{m}\sum_i D_i^{(t)} \cdot [h_t(x_i) \neq y_i]$
- $w_t = \frac{1}{2}\log \left(\frac{1}{\epsilon_t} - 1 \right)$
- $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-w_i y_i h_t(x_i))}{\sum_j D_j^{(t)} \exp(-w_j y_j h_t(x_j))}$

Output: $h_s(x) = \text{sign}(\sum_{t=1}^{T} w_t h_t(x))$

- Increase weight on errors, decrease on correct points:

 $D_i^{(t+1)} \propto \begin{cases}
 D_i^{(t)} \cdot \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} & \text{if } h_t(x_i) \neq y_i \\
 D_i^{(t)} \cdot \sqrt{\frac{\epsilon_t}{1-\epsilon_t}} & \text{if } h_t(x_i) = y_i
 \end{cases}$

- Claim: $L_{D^{(t+1)}}(h_t) = 0.5$
AdaBoost: Minimizing $L_S(h)$

Initialize $D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$

For $t=1, \ldots, T$:

- $h_t = A(D^{(t)})$
- $\epsilon_t = L_{D^{(t)}}(h_t) = \frac{1}{m} \sum_i D_i^{(t)} \cdot \left[[h_t(x_i) \neq y_i] \right]$
- $w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1 \right)$
- $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-w_t y_i h_t(x_i))}{\sum_j D_j^{(t)} \exp(-w_t y_j h_t(x_j))}$

Output: $h_S(x) = \text{sign}(\sum_{t=1}^{T} w_t h_t(x))$

• Theorem: If $\forall_t \epsilon_t \leq \frac{1}{2} - \gamma$, then after T rounds $L_S(h_S) \leq e^{-2\gamma^2 T}$

 If $A(\cdot)$ is a weak learner for \mathcal{H} with params $\delta_0, \epsilon_0 = 1 - \gamma$, and $L_D(h) = 0$

 $\Rightarrow L_S(h) = 0 \Rightarrow L_{D^{(t)}}(h) = 0 \Rightarrow \text{w.p. } 1 - \delta_0, L_{D^{(t)}}(h) \leq \frac{1}{2} - \gamma$

 $\Rightarrow \text{w.p. } 1 - T\delta_0, L_S(h_S) \leq e^{-2\gamma^2 T}$
AdaBoost: Minimizing $L_S(h)$

• Theorem: If $\forall_t \epsilon_t \leq \frac{1}{2} - \gamma$, then after T rounds $L_S(h_S) \leq e^{-2\gamma^2 T}$

 If $A(\cdot)$ is a weak learner for \mathcal{H} with params $\delta_0, \epsilon_0 = 1 - \gamma$, and $L_D(h) = 0$

 $\Rightarrow L_S(h) = 0 \Rightarrow L_D(\epsilon)(h) = 0 \Rightarrow$ w.p. $1 - \delta$, $L_D(\epsilon)(h) \leq \frac{1}{2} - \gamma$

 \Rightarrow w.p. $1 - \delta T$, $L_S(h_S) \leq e^{-2\gamma^2 T}$

• To get any $\epsilon > 0$, run AdaBoost for $T = \frac{\log\left(\frac{1}{\epsilon}\right)}{2\gamma^2}$ rounds

• Setting $\epsilon = \frac{1}{2m}$, after $T = \frac{\log(2m)}{2\gamma^2}$ rounds: $L_S(h_S) = 0$!

• What about $L_D(h)$?
AdaBoost as Learning a Linear Classifier

• Recall: \(h_s(x) = \text{sign}(\sum_{t=1}^{T} w_t h_t(x)) \)

• Let \(\mathcal{B} = \{ \text{all hypothesis outputed by } A \} \)
 • “Base Class”, e.g. decision stumps
 \[h_s \in \{ h_w(x) = \text{sign}(\langle w, \phi(x) \rangle) \mid w \in \mathbb{R}^B \} \]

• AdaBoost can be interpreted as an optimization method for learning a linear predictor
 • Feature space implicitly specified by weak learner
 • “weak learner” \(\approx \) find a coordinate of \(w \) that it will be good to increase

• What about generalization?
 • Even if \(\text{VCdim}(\mathcal{B}) \) is small, \(\text{VCdim}(\mathcal{L}(\mathcal{B})) \) can be exponentially larger
 • E.g. with \(|\mathcal{B}| = 2^r\), \(\text{VCdim}(\mathcal{B}) \leq r \) but can have \(\text{VCdim}(\mathcal{L}(\mathcal{B})) = 2^r \)
Sparse Linear Classifiers

- Recall: \(h_s(x) = \text{sign}(\sum_{t=1}^{T} w_t h_t(x)) \)
- Let \(\mathcal{B} = \{ \text{all hypothesis outputed by } A \} \)
 - “Base Class”, e.g. decision stumps
 \[\phi_h(x) = h(x) \]
 \[h_s \in \{ h_w(x) = \text{sign}(\langle w, \phi(x) \rangle) \mid w \in \mathbb{R}^{\mathcal{B}}, \|w\|_0 \leq T \} \]
 \[w_h = \sum_{h_t=h} w_t \]
 Class of sparse halfspaces \(\mathcal{L}(\mathcal{B}, T) \)
- We already saw: \(\text{VCdim}(\mathcal{L}(\mathcal{B}, T)) \leq O(T \log|\mathcal{B}|) \)
- Even if \(\mathcal{B} \) is infinite (e.g. in the case of decision stumps): \(\text{VCdim}(\mathcal{L}(\mathcal{B}, T)) \leq \tilde{O}(T \cdot \text{VCdim}(\mathcal{B})) \)
- Number of rounds \(T \) (= sparseness) is complexity control
Complexity Control

• After T iterations of AdaBoost:

$$h_s \in \left\{ h_w(x) = \text{sign}(\langle w, \phi(x) \rangle) \mid w \in \mathbb{R}^B, \|w\|_0 \leq T \right\}$$

Class of sparse halfspaces $L(\mathcal{B}, T)$

• Even with a relatively “weak” base class, with high enough T, can get very complex h_s.
 • E.g., with decision stumps over \mathbb{R}, can get any piecewise constant function, i.e. approximate any function arbitrarily well

• Want low T so that we can generalize

• Realizable case: use first T s.t. $L_S(h_s) = 0$
 • We know this will happen with $T = O \left(\frac{\log(m)}{\gamma^2} \right)$

• More realistically: Use validation/cross-validation to select T
 • “Early Stopping” as regularization: we could continue optimizing and lower $L_S(h)$, but stopping the optimization early has a regularization effect
AdaBoost: Beyond Zero Training Error

\[h^{(T)}(x) = \sum_{t=1}^{T} w_t h_t(x) \]

- Even after \(L^0_1 \left(h^{(T)}(x) \right) = 0 \), AdaBoost keeps improving the margin, and hence generalization.
- But it’s a \(\ell_1 \) margin and not \(\ell_2 \) margin as in SVM...
Example: Viola-Jones Face Detector

• Classify each square in an image as “face” or “no-face”

• We’ll consider all squares in an image, at many scales, of size at least 24x24 original pixels, and represent them as 24x24 grayscale pixels.

• $\mathcal{X} = \text{patches of 24x24 grayscale pixels}$
Viola-Jones “Weak Predictors”/Features

\[\mathcal{B} = \left\{ \left[g_{r,t}(x) < \theta \right] \mid \theta \in \mathbb{R}, \text{rect} \ r \text{ in image}, t \in \{ A, B, C, D, \bar{A}, \bar{B}, \bar{C}, \bar{D} \} \right\} \]

where \(g_{r,t}(x) = \text{sum of “blue” pixels} - \text{sum of “red” pixels} \)

First two weak predictors \(h_1, h_2 \) selected in original Viola-Jones implementation:
Viola-Jones Face Detector

• Simple implementation of boosting using generic (non-face specific) “weak learners”/features
 • Can be used also for detecting other objects
• Efficient method using dynamic programing and caching to find good weak predictor
• About 1 million possible $g_{r,t}$, but only very few used in returned predictor
• Sparsity:
 ➔ Generalization
 ➔ Prediction speed! (and small memory footprint)
• To run in real-time (on 2001 laptop), use sequential evaluation
 • First evaluate first few h_t to get rough prediction
 • Only evaluate additional h_t on patches where the leading ones are promising

(and clever engineering in evaluation the required filters on all the patches in all scales....)
Boosting (AdaBoost)

- “Boosting” weak learning to get arbitrary small error
 - Theory is for realizable case
 - Improper learning
- Ensemble method for combining many simpler predictors
 - E.g. combining decision stumps or decision trees
 - Other ensemble methods: bagging, averaging, gating networks
- Method for learning using \textit{sparse} linear predictors with large (infinite?) dimensional feature space
 - Sparsity controls complexity \textit{and} speed
 - Number of iterations controls sparsity \rightarrow early stopping as regularization
- Learning (in high dimensions) with large ℓ_1 margin
 - Learning guarantee in terms of ℓ_1 margin
 - Varying \#iter T explores regularization path (balances of loss and norm)