A SHORT INTRODUCTION TO PYTHON

Numpy, Scipy

Slides adapted from a presentation by Shai Fine
Essential Python Extensions

• The following packages extend Python with extra features
 • NumPy – Fast, multidimensional arrays
 • SciPy – Libraries of reliable, tested scientific functions

• Additional packages for Data Science (not covered today)
 • Wide range of learning algorithms (scikit-learn)
 • Tools for data manipulation (Pandas)
 • Plotting tools (Matplotlib)
 • Direct connection to R (rpy2)
PyLab

Sometimes the union of the 5 packages is called pylab
Helpful Sites

SCIPY DOCUMENTATION PAGE

http://www.scipy.org/Documentation

Numpy Example List With Doc

http://www.scipy.org/Numpy_Example_List_With_Doc

```python
numpy.apply_along_axis(func1d, axis, arr, *args)
```

Execute `func1d(arr[i], *args)` where `func1d` takes 1-D arrays and `arr` is an N-d array. `i` varies so as to apply the function along the given axis for each 1-d subarray in `arr`.

Example:

```python
>>> from numpy import *
>>> def myfunc(a):
...     return (a[0]+a[-1])/2
...     ...
>>> b = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> apply_along_axis(myfunc, 0, b)  # apply myfunc to each column
array([4.5, 5.5])
>>> apply_along_axis(myfunc, 1, b)  # apply myfunc to each row
array([2.5, 5.5])
```
What is NumPy?

- NumPy is the fundamental package for scientific computing with Python

- NumPy provides a fast built-in object, `ndarray`, which is a multi-dimensional array of a homogeneous data-type that can be manipulated in a vectorized form
 - Numpy Offers Matlab-ish capabilities within Python

- NumPy can also be used as an efficient multi-dimensional container of generic data
 - This allows NumPy to seamlessly and speedily integrate with a wide variety of databases

- Chronology
 - Initially developed by Travis Oliphant
 - NumPy 1.0 released October, 2006
 - ~20K downloads/month from Sourceforge
 - Doesn’t count distributions that that include NumPy
 - NumPy is at the core of nearly every scientific Python
Overview of NumPy

N-Dimensional ARRAY (NDARRAY)
- A NumPy array is a homogeneous collection of "items" of the same "data-type" (dtype)
 - Can be 1-dim or N-dims
- Element of the array can be C-structure or simple data-type
- Fast algorithms on machine data-types (int, float, etc.)

Universal Functions (UFUNC)
- Functions that operate element-by-element and return result
- Fast-loops registered for each fundamental data-type
 - \(\sin(x) = [\sin(x_i), i = 0 \ldots N] \)
 - \(x + y = [x_i + y_i, i = 0 \ldots N] \)
Arrays in Python

- Python doesn’t include a built-in multi-dimensional array

- Lists ok for storing small amounts of one-dimensional data

```python
>>> a = [1,3,5,7,9]
>>> print(a[2:4])
[5, 7]
>>> b = [[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]
>>> print(b[0])
[1, 3, 5, 7, 9]
>>> print(b[1][2:4])
[6, 8]
```

- But, can’t use directly with arithmetical operators (+, -, *, /, …)

```python
>>> a = [1,3,5,7,9]
>>> b = [3,5,6,7,9]
>>> c = a + b
>>> print c
[1, 3, 5, 7, 9, 3, 5, 6, 7, 9]
```

- Need efficient arrays with arithmetic and better multidimensional tools
Introducing NumPy Arrays

Simple Array Creation

```python
>>> a = array([0, 1, 2, 3])
>>> a
array([0, 1, 2, 3])
```

Checking the Type

```python
>>> type(a)
<type 'array'>
```

Numeric ‘Type’ of Elements

```python
>>> a.dtype
dtype('int32')
```

Number of Dimensions

```python
>>> a.ndim
1
```

Array Shape

```python
# shape returns a tuple
# listing the length of the
# array along each dimension.
>>> a.shape
(4,)
```

Array Size

```python
# size reports the entire
# number of elements in an
# array.
>>> a.size
4
```

```python
>>> size(a)
4
```
Introducing NumPy Arrays

ARRAY COPY

create a copy of the array
>>> b = a.copy()

>>> b
array([0, 1, 2, 3])

CONVERSION TO LIST

convert a numpy array to a python list
>>> a.tolist()
[0, 1, 2, 3]

For 1D arrays, list also works equivalently, but is slower
>>> list(a)
[0, 1, 2, 3]
Setting Array Elements

ARRAY INDEXING

```python
>>> a[0]
0
>>> a[0] = 10
>>> a
[10, 1, 2, 3]
```

FILL

set all values in an array.
```python
>>> a.fill(0)
>>> a
[0, 0, 0, 0]
```

This also works, but may
be slower
```python
>>> a[:] = 1
>>> a
[1, 1, 1, 1]
```

BEWARE OF TYPE COERSION

```python
>>> a.dtype
dtype('int32')

# assigning a float to
# an int32 array will
# truncate decimal part
>>> a[0] = 10.6
>>> a
[10, 1, 2, 3]

# fill has the same behavior
>>> a.fill(-4.8)
>>> a
[-4, -4, -4, -4]
```
Multi-Dimensional Arrays (ndarray)

MULTI-DIMENSIONAL ARRAYS

>>> a = array([[0, 1, 2, 3],
 [10,11,12,13]])

>>> a
array([[0, 1, 2, 3],
 [10,11,12,13]])

(ROWS,COLUMNS)

>>> a.shape
(2, 4)

>>> shape(a)
(2, 4)

ELEMENT COUNT

>>> a.size
8

>>> size(a)
8

NUMBER OF DIMENSIONS

>>> a.ndims
2

GET/SET ELEMENTS

>>> a[1,3]
array([10, 11, 12, -1])

>>> a[1,3] = -1

>>> a
array([[0, 1, 2, 3],
 [10,11,12,-1]])

ADDRESS FIRST ROW USING SINGLE INDEX

>>> a[1]
array([10, 11, 12, -1])
Array Slicing

SLICING WORKS MUCH LIKE STANDARD PYTHON SLICING

```python
>>> a[0,3:5]
array([3, 4])
```

```python
>>> a[4:,4:]
array([[44, 45],
       [54, 55]])
```

```python
>>> a[::,2]
array([2,12,22,32,42,52])
```

STRIDES ARE ALSO POSSIBLE

```python
>>> a[2::2,::2]
array([[20, 22, 24],
       [40, 42, 44]])
```
Slices Are References

Slices are references to memory in original array. Changing values in a slice also changes the original array.

```python
>>> a = array((0,1,2,3,4))

# create a slice containing only the last element of a
>>> b = a[2:4]
>>> b[0] = 10

# changing b changed a!
>>> a
array([ 1,  2, 10,  3,  4])
```
Indexing by position

```python
>>> a[(0,1,2,3,4),(1,2,3,4,5)]
array([ 1, 12, 23, 34, 45])
```

```python
>>> a[3:,0,2,5]
array([[30, 32, 35],
       [40, 42, 45]])
```

Indexing with Booleans

```python
>>> mask = array([1,0,1,0,0,1],
                dtype=bool)
```

```python
>>> a[mask,2]
array([2,22,52])
```

Unlike slicing, fancy indexing creates copies instead of views into original arrays.
Array Calculation Methods

SUM FUNCTION

```python
>>> a = array([[1,2,3],
               [4,5,6]], float)
# Sum defaults to summing all
# *all* array values.
>>> sum(a)
21.

# supply the keyword axis to
# sum along the 0th axis.
>>> sum(a, axis=0)
array([5., 7., 9.])

# supply the keyword axis to
# sum along the last axis.
>>> sum(a, axis=-1)
array([6., 15.])
```

SUM ARRAY METHOD

```python
# The a.sum() defaults to
# summing *all* array values
>>> a.sum()
21.

# Supply an axis argument to
# sum along a specific axis.
>>> a.sum(axis=0)
array([5., 7., 9.])

# product along columns
>>> a.prod(axis=0)
array([4., 10., 18.])

# functional form
>>> prod(a, axis=0)
array([4., 10., 18.])
```
Min/Max

MIN
>>> a = array([2., 3., 0., 1.])
>>> a.min(axis=0)
0.
use Numpy's amin() instead
of Python's builtin min()
for speed operations on
multi-dimensional arrays.
>>> amin(a, axis=0)
0.

ARGMIN
Find index of minimum value.
>>> a.argmin(axis=0)
2
functional form
>>> argmin(a, axis=0)
2

MAX
>>> a = array([2., 1., 0., 3.])
>>> a.max(axis=0)
3.
functional form
>>> amax(a, axis=0)
3.

ARGMAX
Find index of maximum value.
>>> a.argmax(axis=0)
1
functional form
>>> argmax(a, axis=0)
1
Statistics Array Methods

MEAN

```python
>>> a = array([[1,2,3],
              [4,5,6]], float)

# mean value of each column
>>> a.mean(axis=0)
array([ 2.5,  3.5,  4.5])
>>> mean(a, axis=0)
array([ 2.5,  3.5,  4.5])
>>> average(a, axis=0)
array([ 2.5,  3.5,  4.5])
```

average can also calculate
a weighted average
```python
>>> average(a, weights=[1,2],
          ..., axis=0)
array([ 3.,  4.,  5.])
```
Other Array Methods

CLIP

Limit values to a range
>>> a = array([[1,2,3],
 [4,5,6]], float)

Set values < 3 equal to 3.
Set values > 5 equal to 5.
>>> a.clip(3,5)
array([[3., 3., 3.],
 [4., 5., 5.]])

ROUND

Round values in an array.
Numpy rounds to even, so 1.5 and 2.5 both round to 2.
>>> a = array([1.35, 2.5, 1.5])
>>> a.round()
array([1., 2., 2.])

Round to first decimal place.
>>> a.round(decimals=1)
array([1.4, 2.5, 1.5])

POINT TO POINT

Calculate max - min for
array along columns
>>> a.ptp(axis=0)
array([3.0, 3.0, 3.0])
max - min for entire array.
>>> a.ptp(axis=None)
5.0
Universal Functions (ufunc)

- ufuncs are objects that rapidly evaluate a function element-by-element over an array.
- Core piece is a 1-d loop written in C that performs the operation over the largest dimension of the array.
- For 1-d arrays it is equivalent to but much faster than list comprehension.

```python
>>> type(np.exp)
<type 'numpy.ufunc'>
>>> x = array([1,2,3,4,5])
>>> print np.exp(x)
[2.71828, 7.38905, 20.08553, 54.59815, 148.41315]
>>> print [math.exp(val) for val in x]
[2.71828, 7.38905, 20.08553, 54.59815, 148.41315]
```

note: values reformatted to fit slide
Vectorizing Functions

Example

```python
# special.sinc already available
# This is just for show.
def sinc(x):
    if x == 0.0:
        return 1.0
    else:
        w = pi*x
        return sin(w) / w
```

```python
>>> sinc([1.3,1.5])
TypeError: can't multiply sequence to non-int
>>> x = r_[-5:5:100j]
>>> y = vsinc(x)
>>> plot(x, y)
```

SOLUTION

```python
>>> from numpy import vectorize
>>> vsinc = vectorize(sinc)
>>> vsinc([1.3,1.5])
array([-0.1981, -0.2122])
```
Mathematic Binary Operators *element by element*

- $a + b \rightarrow \text{add}(a,b)$
- $a - b \rightarrow \text{subtract}(a,b)$
- $a \% b \rightarrow \text{remainder}(a,b)$
- $a \times b \rightarrow \text{multiply}(a,b)$
- $a / b \rightarrow \text{divide}(a,b)$
- $a ** b \rightarrow \text{power}(a,b)$

Multiply by a Scalar

```python
>>> a = array((1,2))
>>> a*3.
array([3., 6.])
```

Element by Element Addition

```python
>>> a = array([1,2])
>>> b = array([3,4])
>>> a + b
array([4, 6])
```

Addition Using an Operator Function

```python
>>> add(a,b)
array([4, 6])
```

In Place Operation

```python
# Overwrite contents of a.
# Saves array creation overhead
>>> add(a,b,a) # a += b
array([4, 6])
>>> a
array([4, 6])
```
Comparison and Logical Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal</td>
<td><code>==</code></td>
</tr>
<tr>
<td>Greater Equal</td>
<td><code>>=</code></td>
</tr>
<tr>
<td>Logical And</td>
<td></td>
</tr>
<tr>
<td>Logical Not</td>
<td></td>
</tr>
<tr>
<td>Not Equal</td>
<td><code>!=</code></td>
</tr>
<tr>
<td>Less</td>
<td><code><</code></td>
</tr>
<tr>
<td>Logical Or</td>
<td></td>
</tr>
<tr>
<td>Logical Xor</td>
<td></td>
</tr>
</tbody>
</table>

2D Example

```python
>>> a = array(((1,2,3,4),(2,3,4,5)))
>>> b = array(((1,2,5,4),(1,3,4,5)))
>>> a == b
array([[True, True, False, True],
       [False, True, True, True]])

# functional equivalent
>>> equal(a,b)
array([[True, True, False, True],
       [False, True, True, True]])
```
Bitwise Operators

Work only on Integer arrays

<table>
<thead>
<tr>
<th>bitwise_and (&)</th>
<th>invert (~)</th>
<th>right_shift(a, shifts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bitwise_or (</td>
<td></td>
<td>)</td>
</tr>
</tbody>
</table>

Bitwise Examples

```python
>>> a = array((1, 2, 4, 8))
>>> b = array((16, 32, 64, 128))
>>> bitwise_or(a, b)
array([17, 34, 68, 136])
```

```python
# bit inversion
>>> a = array((1, 2, 3, 4), uint8)
>>> invert(a)
array([254, 253, 252, 251], dtype=uint8)
```

```python
# left shift operation
>>> left_shift(a, 3)
array([ 8, 16, 24, 32], dtype=uint8)
```
Matrix

- For two dimensional arrays NumPy defined a special matrix class in module `matrix`
 - Objects are created either with `matrix()` or `mat()` or converted from an array with method `asmatrix()`

```python
>>> import numpy
>>> m = numpy.mat([[1,2],[3,4]])
# or
>>> a = numpy.array([[1,2],[3,4]])
>>> m = numpy.mat(a)
# or
>>> a = numpy.array([[1,2],[3,4]])
>>> m = numpy.asmatrix(a)
```

- Note that the statement `m = mat(a)` creates a copy of array 'a', whereas, method `m = asmatrix(a)` returns a new reference to the same data
Broadcasting

- Multiple inputs must be “broadcasted” to the same shape
 - All arrays are promoted to the same number of dimensions
 - All dimensions of length 1 are expanded as needed

- The *trailing* axes of both arrays must either be 1 or have the same size for broadcasting to occur
Matrix Objects

STRING CONSTRUCTION

```python
>>> from numpy import mat
>>> a = mat('[1,3,5;2,5,1;2,3,6]')
>>> a
matrix([[1, 3, 5],
        [2, 5, 1],
        [2, 3, 6]])
```

TRANSPOSE ATTRIBUTE

```python
>>> a.T
matrix([[1, 2, 2],
        [3, 5, 3],
        [5, 1, 6]])
```

INVERTED ATTRIBUTE

```python
>>> a.I
matrix([[-1.1739, 0.1304, 0.956],
        [0.4347, 0.1739, -0.391],
        [0.1739, -0.130, 0.0434]])
```

DIAGONAL

```python
>>> a.diagonal()
matrix([[1, 5, 6]])
>>> a.diagonal(-1)
matrix([[3, 1]])
```

SOLVE

```python
>>> b = mat('10;8;3')
>>> a.I*b
matrix([[-7.82608696],
        [4.56521739],
        [0.82608696]])
```

```python
>>> from scipy import linalg
>>> linalg.solve(a,b)
matrix([[-7.82608696],
        [4.56521739],
        [0.82608696]])
```
Matrix vs. Array

• Operator *, dot(), and multiply():
 • Array – '*' means element-wise multiplication; dot() is used for matrix mul.
 • Matrix – '*' means matrix multiplication; multiply() is used for element-wise mul.

• Handling of vectors (rank-1 arrays)
 • Array – the vector shapes 1xN, Nx1 are different things. Operations like A[:,1] return a rank-1 of shape N, not a rank-2 of shape Nx1. Transpose a rank-1 array does nothing.
 • Matrix – rank-1 arrays are always upgraded to 1xN or Nx1 matrices (row or column vectors). A[:,1] returns a rank-2 matrix of shape Nx1.

• Handling of higher-rank arrays (rank > 2)
 • Array objects can have rank > 2
 • Matrix objects always have exactly rank 2

• Convenience attributes
 • Array has a .T attribute, which returns the transpose of the data
 • Matrix has .T, .H, .I, and .A attributes, which return the conjugate transpose, inverse, and asarray() of the matrix, respectively.

• Convenience constructor
 • Array constructor takes (nested) Python sequences as initializers
 • Matrix constructor additionally takes a convenient string initializer
Example – Array and Matrix Calc.

```python
>>> A = np.array([[n+m*10 for n in range(5)] for m in range(5)])
>>> v1 = arange(0, 5)
>>> A
array([[  0,  1,  2,  3,  4],
       [ 10, 11, 12, 13, 14],
       [ 20, 21, 22, 23, 24],
       [ 30, 31, 32, 33, 34],
       [ 40, 41, 42, 43, 44]])
>>> v1
array([0, 1, 2, 3, 4])
>>> np.dot(A, A)
array([[ 300,  310,  320,  330,  340],
       [ 1300, 1360, 1420, 1480, 1540],
       [ 2300, 2410, 2520, 2630, 2740],
       [ 3300, 3460, 3620, 3780, 3940],
       [ 4300, 4510, 4720, 4930, 5140]])
>>> np.dot(A, v1)
array([ 30, 130, 230, 330, 430])
>>> np.dot(v1, v1)
30
```
Examples – Array and Matrix Calc.

Alternatively, we can cast the array objects to the type matrix. This # changes the behavior of the standard arithmetic operators +, -, * to # use matrix algebra.

```python
>>> M = np.matrix(A)
>>> v = np.matrix(v1).T
>>> v
matrix([[0],
    [1],
    [2],
    [3],
    [4]]))
>>> M*v
matrix([[30],
    [130],
    [230],
    [330],
    [430]])
>>> v.T * v   # inner product
matrix([[30]])
```
Concluding Remarks

• Using arrays wisely
 • Array operations are implemented in C or Fortran
 • Optimized algorithms - i.e. fast!
 • Python loops (i.e. for i in a:…) are much slower
 • Prefer array operations over loops, especially when speed important
 • Also produces shorter code, often more readable

• Matrix or Array, which one to use?
 • Short answer – Use Array
 • They are the standard vector/matrix/tensor type of NumPy. Many NumPy functions return arrays, not matrices
 • There is a clear distinction between element-wise and linear algebra operations
 • You can have standard vectors or row/column vectors if you like
 • The main disadvantage of using the array type is that you will have to use \texttt{dot()} instead of ‘*’ matrix multiplication

• NumPy for Matlab Users
 • \url{http://wiki.scipy.org/NumPy_for_Matlab_Users}
SCIPY
Scientific Python
SciPy Overview

- Available at www.scipy.org

CURRENT PACKAGES

- Special Functions (scipy.special)
- Signal Processing (scipy.signal)
- Image Processing (scipy.ndimage)
- Fourier Transforms (scipy.fftpack)
- Optimization (scipy.optimize)
- Numerical Integration (scipy.integrate)
- Linear Algebra (scipy.linalg)
- Input/Output (scipy.io)
- Statistics (scipy.stats)
- Fast Execution (scipy.weave)
- Clustering Algorithms (scipy.cluster)
- Sparse Matrices (scipy.sparse)
- Interpolation (scipy.interpolate)
- More (e.g. scipy.odr, scipy.maxentropy)
Image Processing

The famous lena image is packaged with scipy
>>> from scipy import lena, signal
>>> lena = lena().astype(float32)
>>> imshow(lena, cmap=cm.gray)

Blurring using a median filter
>>> fl = signal.medfilt2d(lena, [15,15])
>>> imshow(fl, cmap=cm.gray)
Edge detection using Sobel filter

```python
>>> from scipy.ndimage.filters import sobel
>>> imshow(lena)
>>> edges = sobel(lena)
>>> imshow(edges)
```

NOISY IMAGE

FILTERED IMAGE
Statistics

scipy.stats --- CONTINUOUS DISTRIBUTIONS

over 80 continuous distributions!

METHODS

dfd
cdf
rvs
ppf
stats
10 standard discrete distributions (plus any arbitrary finite RV)

METHODS

pdf cdf rvs ppf stats
Sample normal dist. 100 times.

```python
>>> samp = stats.norm.rvs(size=100)
```

```plaintext
>>> x = r_-5:5:100j
# Calculate probability dist.
>>> pdf = stats.norm.pdf(x)
```

Calculate cummulative Dist.
```plaintext
>>> cdf = stats.norm.cdf(x)
```

Calculate Percent Point Function
```plaintext
>>> ppf = stats.norm.ppf(x)
```
Statistics

scipy.stats --- Basic Statistical Calculations on Data

- `numpy.mean`, `numpy.std`, `numpy.var`, `numpy.cov`
- `stats.skew`, `stats.kurtosis`, `stats.moment`

scipy.stats.bayes_mvs --- Bayesian mean, variance, and std.

```python
# Create “frozen” Gamma distribution with a=2.5
>>> grv = stats.gamma(2.5)
>>> grv.stats()  # Theoretical mean and variance
(array(2.5), array(2.5))
# Estimate mean, variance, and std with 95% confidence
>>> vals = grv.rvs(size=100)
>>> stats.bayes_mvs(vals, alpha=0.95)
((2.52887906081, 2.19560839724, 2.86214972438),
 (2.87924964268, 2.17476164549, 3.8070215789),
 (1.69246760584, 1.47470730841, 1.95115903475))
# (expected value and confidence interval for each of
# mean, variance, and standard-deviation)
```
Sample normal dist. 100 times.

```python
>>> rv1 = stats.norm()
>>> rv2 = stats.norm(2.0, 0.8)
>>> samp = [rv1.rvs(size=100), rv2.rvs(size=100)]
```

Kernel estimate (smoothed histogram)

```python
>>> apdf = stats.kde.gaussian_kde(samp)
>>> x = linspace(-3, 6, 200)
>>> plot(x, apdf(x), 'r')
```

Histogram

```python
>>> hist(x, bins=25, normed=True)
```
Linear Algebra

scipy.linalg --- FAST LINEAR ALGEBRA

• Uses ATLAS if available --- very fast

• Low-level access to BLAS and LAPACK routines in modules linalg.fblas, and linalg.flapack (FORTRAN order)

• High level matrix routines
 • Linear Algebra Basics: inv, solve, det, norm, lstsq, pinv
 • Decompositions: eig, lu, svd, orth, cholesky, qr, schur
 • Matrix Functions: expm, logm, sqrtm, cosm, coshm, funm (general matrix functions)
Linear Algebra

LU FACTORIZATION

```python
>>> from scipy import linalg
>>> a = array([[1,3,5],
...            [2,5,1],
...            [2,3,6]])
# time consuming factorization
>>> lu, piv = linalg.lu_factor(a)

# fast solve for 1 or more
# right hand sides.
>>> b = array([10,8,3])
>>> linalg.lu_solve((lu, piv), b)
array([-7.82608696, 4.56521739, 0.82608696])
```

EIGEN VALUES AND VECTORS

```python
>>> from scipy import linalg
>>> a = array([[1,3,5],
...            [2,5,1],
...            [2,3,6]])
# compute eigen values/vectors
>>> vals, vecs = linalg.eig(a)
# print eigen values
>>> vals
array([9.39895873+0.j, -0.73379338+0.j, 3.33483465+0.j])
# eigen vectors are in columns
# print first eigen vector
>>> vecs[:,:,0]
array([-0.57028326, -0.41979215, -0.70608183])
# norm of vector should be 1.0
>>> linalg.norm(vecs[:,:,0])
1.0
```
Optimization

scipy.optimize --- unconstrained minimization and root finding

• Unconstrained Optimization

 fmin (Nelder-Mead simplex), *fmin_powell* (Powell’s method), *fmin_bfgs* (BFGS quasi-Newton method), *fmin_ncg* (Newton conjugate gradient), *leastsq* (Levenberg-Marquardt), *anneal* (simulated annealing global minimizer), *brute* (brute force global minimizer), *brent* (excellent 1-D minimizer), *golden*, *bracket*

• Constrained Optimization

 fmin_l_bfgs_b, *fmin_tnc* (truncated newton code), *fmin_cobyla* (constrained optimization by linear approximation), *fminbound* (interval constrained 1-d minimizer)

• Root finding

 fsolve (using MINPACK), *brentq*, *brenth*, *ridder*, *newton*, *bisect*, *fixed_point* (fixed point equation solver)
Optimization

EXAMPLE: Non-linear least-squares data fitting

fit data-points to a curve
demo/data_fitting/datafit.py
>>> from numpy.random import randn
>>> from numpy import exp, sin, pi
>>> from numpy import linspace
>>> from scipy.optimize import leastsq

>>> def func(x, A, a, f, phi):
 return A*exp(-a*sin(f*x+pi/4))

>>> def errfunc(params, x, data):
 return func(x, *params) - data

>>> ptrue = [3, 2, 1, pi/4]
>>> x = linspace(0, 2*pi, 25)
>>> true = func(x, *ptrue)
>>> noisy = true + 0.3*randn(len(x))
>>> p0 = [1, 1, 1, 1]
>>> pmin, ier = leastsq(errfunc, p0, args=(x, noisy))
>>> pmin
array([3.1705, 1.9501, 1.0206, 0.7034])
THANK YOU