תוכן עניינים:

<table>
<thead>
<tr>
<th>מספר</th>
<th>טבלת</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>חקודה</td>
</tr>
<tr>
<td>2</td>
<td>תיאור כללי - Link Reversal</td>
</tr>
<tr>
<td>3</td>
<td>סקירת העבודה</td>
</tr>
<tr>
<td>4</td>
<td>מונחים ומשתנים</td>
</tr>
<tr>
<td>5</td>
<td>סמיניות הרדויות</td>
</tr>
<tr>
<td>6</td>
<td>משפטים ומסקנות</td>
</tr>
<tr>
<td>7</td>
<td>טבעות (rings)</td>
</tr>
<tr>
<td>8</td>
<td>תיאור כללי</td>
</tr>
<tr>
<td>9</td>
<td>ניחוח סיבוכיות</td>
</tr>
<tr>
<td>10</td>
<td>חנות הדיקוט היחסים</td>
</tr>
<tr>
<td>11</td>
<td>גור "קמעה" בטבע</td>
</tr>
<tr>
<td>12</td>
<td>רשתות (meshes)</td>
</tr>
<tr>
<td>13</td>
<td>תיאור כללי</td>
</tr>
<tr>
<td>14</td>
<td>ניחוח סיבוכיות</td>
</tr>
<tr>
<td>15</td>
<td>חפור-קוביה (hypercube)</td>
</tr>
<tr>
<td>16</td>
<td>תיאור כללי</td>
</tr>
<tr>
<td>17</td>
<td>ניחוח סיבוכיות</td>
</tr>
<tr>
<td>18</td>
<td>חכלל (k-ary n-cube)</td>
</tr>
<tr>
<td>19</td>
<td>מ CGRectMakeים פרטליים</td>
</tr>
<tr>
<td>20</td>
<td>חוסם עלון עבור סיבוכיות בקוביה היכולת</td>
</tr>
<tr>
<td>21</td>
<td>סיכום</td>
</tr>
<tr>
<td>22</td>
<td>ביבליוגרפיה</td>
</tr>
</tbody>
</table>

מגניימש:

מיכל הורביץ
300652344
לצר שפירה
301328977
העבדה הטעוסת בתוכם זכויות נושאים וזכויות יוצרים
ברнстון אียง טויט, וכסכיסי טספם, בעיתון הראשה ייוצף על Gafni ב-
1981.
בעדנrente, נטיות להפשיט אלגוריתמי פיזור המיתתים לע
נתנה את תוצאות האלגוריתמים בעיבר רהיטים סיסים
המשימה היא לתבוע תחומ על כל סיבוכיות תחום של אלגוריתמים מסוד (מחזיא בחמש), עב
רפוסי גאול.

1. ממאור כר

- Link Reversal

1.1 נתאר בכרך את אלגוריתם הניתוב, המאמר başמר
נתן כרכ : $G = (V \cup \{0\}, E)$, G נקאר צומת העדה. המשרה היא סיסים בעינו
וזה מתמט של ריכוז 0 נקאר צומת העדה. המשרה היא סיסים בעינו
נראית ידוע כאשר מקוון מוצע בים למחלק של קים מוסלכ כל צומת ברך עד צומת העדה. נקאר גר כו
(0-oriented) " intéressant נגד 0 מופך
לצורות, כ- מגוון נוכחות בין כל שני צופים סופיים בגר.

צומת "בירו" (sink) היא צומת שאף صفוח היוצא ממנה. על מנטת ל.fetchall את הסיסים המבוקש
בגר, יש לה-resource מתכוב ואין ברך גור מחלק, כל צומת העדה. בל היעד, נסיך הוליפה
צומת הנכנסות (sink).

המעום בשור. ואן אינפי ייוניו חלב מקושחה של צומת לשון, מי
킴יסי של אלגוריתמים עיקריים.

הראשה ממנה, נקאר Coil הקושחה ותתכת vakצירה, ז
המפל של כל אטוטיצים צומת בר המשותף ביאטריצים, זו
בכל אטוטיצים, שבקל אטוטיצים עוחר כל צומת בר המשותף
בכל אטוטיצים, שבקל אטוטיצים עוחר כל צומת בר המשותף
באטריצים, זו הפיכים חלב מקושחה המלכות אתי. באופי כ蓮, מודבר על הקשות
האטריצים.

אושי על עברה הימפר, המס שמסתירות שת民意ות המודבר היה בור.

בנמאת [2] מוצג מש桎ו bakım בברעם שינון של FR (החברה המשפת מפועילה במרמעא)
בגאול-G, וכר פוטיק שטר, מתקיים:

1. כל ביצועי FR
2. כל אופי מובש אתו叟 סטר של גאול FR
cל מוספר העודים תולע בור.
3. "מקנה" מאולג עוצמתי : חכר שתקובל אך הוא "מקנה".

עד בור
FR PR שקול לפוסק לשול ביצוע של
FR, אתחדש מעזה של PR לאטי תור ייחות - PR. לבר, תמוסי - ב.
FR PR תדר, וחסיני ביסיבות עם ביצוע אלו גאולים. מוסק
ופ適合,cker פוטיק שסרב תומך וברועיוגל בגרו
בificantly, 1ב5, ובו פוקיבית נבר (כממה במאמרים)
וייון מוספר דרכי ויצויים באומלをする "אלגוריתמים".
בנתח סיבוכיות זמנים, תייחס למספר האוטぽרטרים של האלגוריתמים על עארית כهما ומכסמטיבי
“מכונים” [0]. בפרט, סיבוכיות ההזז מכילות של האלגוריתמים מגדירים להזז הממסמים בין כולם
ה蜇מות, כאשר עבורי כל זומת מחשבים את האוטぽרטרים הארחונים והזז מצביע פיתול. כפל
שלכחים הממסים [4] [-5], מסע על סיבוכיות ההזז עבורי כל סוג הזרמיםลงไปונות
מכונים ואר רביעי.

במAlamat [2] [6], מקומי, כל ההזז עייני מטריציות
למסרים, כל זן ליצוג עייני מטריציות
מכאן, על ידי שימור ב-min plus algebra - ההזז מגדירorque פיתול של סיבוכיות ההזז ליצוג
ה蜇מות, כל זן במאفائני תנגך החתולים. בפרט, מקח כי סיבוכיות ההזז שעבורי עבורי
FR להזז בתוכפת השמות ובגרו.

1.2 סקרת העבורה

בעבודה, נתנה האלגוריתמים של ברדיאציה של Full Reversal ו-Bardiazeit של Link Reversal לשתי זרמים
k-ary n-cube-1 (hypercube) ו-k-ary n-cube (hypercube) - הצוות,crease (mesh)
ונתיח במקוורים הפרפים, ואוכפי כל פעול המקרה
עבורי כל זן מנטרה תפס עלון עבורי סיבוכיות ההזז, בטיוור ממתחס עבורי גרסה כלים.
בברדיאציה הפרמי של טיביט, סיבוכיות ההזז ליצאיר במספרorns,jured, צוות כי תפס זה
הskirts, אטרを中心 למקוור שופץ קשת ATTACK לטבע גרסה לסיבוכיות רוביה.

נתני כי ברפסים מקוונים, בשרייר לאל מעגלים, שכר קב מمشارיכי האל有条件的ים
יתפסו ז镙י גרפז מחוז "ס" בסיים הביצוע.
מנתחים ומשפטים

2.1 סימון הגדרות

呼和ות נתון סימון יעיל \(G_0 \) G = \(\{ V \cup \{ 0 \}, E \} \):

\[V = \{ 1, 2, \ldots, N \} \]

הצומת \(i \) \- \((i,j) \) הקשת \(E \).

 dumpsters של \(N \) גרסה

\(0 \leq m < k \), \(i_0, \ldots, i_k \geq 0 \)

\(\lambda (c) \) מתכנת והן \(\langle i_m, i_{m+1} \rangle \) הנ’é בא ה- \(E \)

\(k \) תומדרה של \(c \)

\(i_k = i_0 \)

שתמש של \(n \) קשתות \(c \)

\(\theta \) הא燒י

\(\Theta \) максימום של \(\theta \)

\(\theta = \max \left\{ \theta_i \mid i \in V \cup \{ 0 \} \right\} \)
בSİד

routing - מוספר הוויהות של צמתיי עוקבים בשורה ר שומורונות קשת ברפ. נקרא

(לוספ) - (RF) (december) (ה commande) (노력י לה יותיה) ודרוה מזוממות האחורית ב - ניתן

уется ב-.

- המרחק בין הצמתיו ב, j, בקשת§על§צמתי

$\min\{\lambda(c) : c \in C(i, j, G)\}$

- המרחק בין הצמתיו ב, j, בקשת§על§צמתי

$\{c : c \in C(\rightarrow, i, G) \cap r_g(c) = w_i - 1\}$

- $\lambda(c') = \max\{\lambda(c) : c \in S_i\}$

2.2

משפטים ומסקנות

הבחנה 1.

Theorem 4 [2]: $\lambda(c) \geq r_g(c)$ לכל שורה c מחכים

$w_i = \min\{r_g(c) : c \in C(0, i, G)\}$

(לוספ) - Theorem 6 [2]: $\lambda_i = \max\{\lambda(c) : c \in S_i\} + 1$

$w_i \leq \text{diameter}(G) = d$

$\lambda(c') = \max\{\lambda(c) : c \in S_i\}$

$\text{הבחנה }: 0 \not\in c \iff (r_g(c) = w_i - 1) \land (c \in C(\rightarrow, i, G))$

$\text{הבחנה }: \lambda(c') \leq \lambda(c)$ז, $0 \in c$ וא c' שורהirez של$ c$ ב$ c$ נגiolet מבשללות$ c'$ כל$ c$,

$\lambda(c') < w_i$

$\text{הבחנה }: \lambda(c') \leq \lambda(c)$ז, $0 \in c$ וא c' שורהirez של$ c$ ב$ c$ נגiolet מבשללות$ c'$ כל$ c$,

$\lambda(c') < w_i$
3.

3.1.

Theorem 3.

Let d be an integer and N be an even number. Define $d = \left\lfloor \frac{N}{2} \right\rfloor$. Then the following holds:

- $\lambda(c) \leq N - 1$ for any $c \in S_1$.
- $\lambda(c) = 2r_g(c_2)$ if $c = c_1c_2$ and $\lambda(c_1) = 2r_g(c_2)$.
- $\lambda(c) = \min\left\{ \lambda(c_1), \lambda(c_2) \right\}$ for any $c = c_1c_2$.
- $r_g(c_2) \leq r_g(c) = w_i - 1 \leq \left\lfloor \frac{N}{2} \right\rfloor - 1$.

Theorem 3.3.

3.3.

Theorem 3.3.

Let N be an even number. Define $d(0,1) = \left\lfloor \frac{N}{2} \right\rfloor$. Then the following holds:

- $\theta = O(N)$.
- $\theta_i = \max\left\{ \lambda(c) : c \in S_i \right\}$.
- $\theta_i \leq 2(N - 1)$.

Diagram:

- A graph with labeled vertices and edges.
- Vectors pointing to different vertices.
- Additional text annotations for clarity.
where \(C(0,i,G) \), \(C_i^1 \), \(C_i^2 \):

\[
w_i = \min \{ r_g(c): c \in C(0,i,G) \} = \min \{ r_g(c^1), r_g(c^2) \}
\]

where \(r_g(c^1) = \lambda(c^1) \), \(r_g(c^2) = \lambda(c^2) \)

all \(w \) values are \(1 \)’s in the following:

\[
\theta_i = \max \{ \lambda(c): c \in S_i \} + 1 = 2(\lfloor \frac{N}{2} \rfloor - 1) + 1 = O(N): \text{for} \theta_i
\]

3.4 "Cyclic" Subcase

The main result: For each link, the cyclic subcase is used.

\[
\lambda(c) = \begin{cases} \lambda(c^1) & \text{if } \lambda(c^1) \geq \lambda(c^2) \\ \lambda(c^2) & \text{otherwise} \end{cases}
\]

One cycle of dependencies is indicated by a dotted line (A). The remaining dependencies are skipped for simplicity.

\[
\sum_{i=1}^{N/2} \theta_i = \sum_{i=1}^{N/2} \left(2\left(\lfloor \frac{N}{2} \rfloor - 1\right) + 1 = O(N)\right)
\]

For each \(w \) in the cycle (up to \(N/2 \)),

\[
w_i = \left\lfloor \frac{N}{2} \right\rfloor + 1
\]

as \(\sum_w \) is the same formula above.

The cycle includes dependencies between each \(C_i \), \(C_{i+1}, \ldots, C_{i+N/2-1} \):

\[
C_i \rightarrow C_{i+1} \rightarrow \ldots \rightarrow C_{i+N/2-1} \rightarrow C_i
\]

Dependency between \(C_i \) and \(C_{i+1} \) is indicated by a dotted line (A). The remaining dependencies are skipped for simplicity.

\[
\sum_{i=1}^{N/2} \theta_i = \sum_{i=1}^{N/2} \left(2\left(\lfloor \frac{N}{2} \rfloor - 1\right) + 1 = O(N)\right)
\]

For each \(w \) in the cycle (up to \(N/2 \)),

\[
w_i = \left\lfloor \frac{N}{2} \right\rfloor + 1
\]

as \(\sum_w \) is the same formula above.

The cycle includes dependencies between each \(C_i \), \(C_{i+1}, \ldots, C_{i+N/2-1} \):

\[
C_i \rightarrow C_{i+1} \rightarrow \ldots \rightarrow C_{i+N/2-1} \rightarrow C_i
\]
4

4.1 תיאור כללי

בנוסף למתחילה ו렇עה...

$$k = \sqrt{N}$$

$$d = 2\left(\sqrt{N} - 1\right) = 2(k - 1)$$

מכאן נ kukal: נבחנה...

נבחנה את סיבוכיות ההתחנה. עבור FR במעלית ובPagerank

$$\Theta\left(N \sqrt{\frac{d}{k}}\right)$$

נבחנה בערך אחד, כי סיבוכיות ההתחנה היא

4.2 גישה סיבוכית

בכל Garcíaرشטי לכל עמתון i מתחימה: $c_i \in S_i$

איך Skipping מתוכנ𝐱

$$w_i \leq d \leq 2(k - 1)$$

(משטח)

איך Skipping המתוכנ𝐱

$0 \in c \ 2$ פשרתי c_i

איך Skipping המתוכנ𝐱

$1 \in c_i$ $c \ 2$ פשרתי $c_1 \ c_i$

איך Skipping המתוכנ𝐱

$0 \notin c_i \ 2$ פשרתי c_i

ברית פורמלית

$\lambda(c_i) \leq N - 1$

בנוסף: c_2 ממיות ש- שרשרת סנגור (ה đám הרוח)

$\lambda(c_2) \leq (N - 1) \cdot r_g(c_2)$

$\lambda(c) \leq (N - 1) \cdot r_g(c)$

$0 \in c \ 2$ פשרתי c_i

$1 \in c_i$ $c \ 2$ פשרתי $c_1 \ c_i$

$0 \notin c_i \ 2$ פשרתי c_i

$\lambda(c_i) \leq N - 1$

בנוסף: c_2 ממיות ש- שרשרת סנגור (ה đám הרוח)

$\lambda(c_2) \leq (N - 1) \cdot r_g(c_2)$

$\lambda(c) \leq (N - 1) \cdot r_g(c)$

$0 \in c \ 2$ פשרתי c_i

$1 \in c_i$ $c \ 2$ פשרתי $c_1 \ c_i$

$0 \notin c_i \ 2$ פשרתי c_i

$\lambda(c_i) \leq N - 1$

בנוסף: c_2 ממיות ש- שרשרת סנגור (ה đám הרוח)

$\lambda(c_2) \leq (N - 1) \cdot r_g(c_2)$

$\lambda(c) \leq (N - 1) \cdot r_g(c)$

$0 \in c \ 2$ פשרתי c_i

$1 \in c_i$ $c \ 2$ פשרתי $c_1 \ c_i$

$0 \notin c_i \ 2$ פשרתי c_i

$\lambda(c_i) \leq N - 1$

בנוסף: c_2 ממיות ש- שרשרת סנגור (ה đám הרוח)

$\lambda(c_2) \leq (N - 1) \cdot r_g(c_2)$

$\lambda(c) \leq (N - 1) \cdot r_g(c)$

$0 \in c \ 2$ פשרתי c_i

$1 \in c_i$ $c \ 2$ פשרתי $c_1 \ c_i$
היפר-קוביה

5.1 תיאור כללי

היפר-קוביה היא התאוצה של היפר-קוביות הבסיסיות במספרים שונים. המטרقسم השולחן של
היפר-קוביות מתמשכים לכל ממד, ו- 0 מעלות. הקובייהathlon-ממדית גรวה (עלול 8
דדוקידים), היא היפר-קוביה מומקז 3. ריבוע היפר-קוביות 2 וקוטק היפר-קוביה ממוקז 1.

הלול דוגמא של היפר-קוביה ממוקז 2,3,4

האפשרויות של עבר היפר-קוביה ממוקז ד"א

.: D

דרגת כל צומת היא -

. d = D :-

. N = 2 2 2, -

היפר-קוביה היא התאוצהLocalized גראית שערוטי הרבה בשימושים לעבר ממקיבי. והתכנסויות של
המעבדות המאוחרות והקונטרונתים של ההמגמה והרבבה הולכת ותרתית מתים)

5.2 גינון סיבוכיות

יהא גרף היפר-קוביה ממוקז ד"א

. d

. (3) לכל צומת i מתקיים : w ≤ log(N) :ght

. c ∈ S ,يثアナ

על פי משוואת (1) (המוכחת בסעיף הקודם עבור כל גרף) נקבל:

\[\theta = O\left(N \log(N)\right) \]

(k-ary n-cube)

6

הכללה

את סיווג הגרפים שנוייתות בסטים של קודמים נין לחדול
.Cube-connected cycles, k-ary n-cube קובע את מגרסת פריטים של k-ary n-cube בשאלה
ב릃, ואת בר וסיבובים של k-ary n-cube במנחה הכללי
בר покупа ומגזרה בכל k, k-ary n-cube, edge זה ומגזרה

6.1 ממוס פרוטו

(טוען) k × k הגזרהatego רוש온 k-ary 2-cube
عودة השתייה המפותחת מעבר לסכום
(טוען) 0\(k^3\) כיוון ש: \(O\left(N\sqrt{N}\right)\)
יר cocaine וסיבובים זה \(O\left(N\log(N)\right)\)
. \(O\left(n \cdot 2^n\right)\), \(n = \log(N)\)
. \(O\left(n \cdot 2^n\right)\), \(n = \log(N)\)

6.2 הסשם עליון טור הסיבוכיות במגרסת הכללי

עבר סשם k-ary n-cube לכלל מתקיים
: \(N = k^n\) (לפי מאמר [7] \(d = nk/2\)
לכל הממשי \(w_i \leq d = nk/2\)
. \(c \in S_i\)

:\(\lambda(c) \leq d \cdot (N-1) = (nk/2) \cdot (N-1)\)

: \(\theta_i = \max\{\lambda(c) : c \in S_i\} + 1 \leq (nk/2) \cdot (N-1) + 1 = (nk/2) \cdot (k^n - 1)\)

: \(\theta = O\left(k^{n+1} n\right) = O\left(k^{n+1} n\right)\)

10
 Ruiz סיכום

ה jTable: 7

עבורה זו עסיקת בנייה סיבוכיות חומק שלอลרימים ב FR במעוף בטיסט ב-Link Reversal שניקת את-change של השתקתのかלום жизни.

בעבורה זו עסיקת גורם ממספר סריגה: בפועל, רשת, יפר-קובה, ושכלה של הקודים: k-ary.n-cube

המסקנה העיקרית מניית ה꧒ sikובים עברה הגרסה הליי היא: שעריה המשמעיות większe מבית trợ

ائفוליתים בגרף כליל י獐ף הגרף. אם ידוע חודר הגרף, יזם לחסום את Link Reversal العراقي המלמשל "י" (משהן 3, אשר נבוע מממורי (2) או סיבוכיות הום ב- O(d) (משהן 3, אשר נבוע מממורי (2) או סיבוכיות הום ב- O(dN)

בנוסף, כמות פרזיים, גזע זך בטיעה, יזם היה לחסותו בשיקוליםakhirים על פי המבנה הייחודי של הגרף, בכך לחסום את סיבוכיות הום בגרף הדוקה יותר.

בפרט, עבורה זך בטיעה hacked סיבוכיות זן לאירח, והוכנת כי לחס זו הדוק.
ВІДКРИТО

