CS236635
Network Functions Virtualization (NFV)

Class 10

Danny Raz
Last week

• Micro services

Before that:

• NFV - moving NF to the cloud

This week

• Resource allocation
• Performance
• Placement
Resource allocation in the Cloud

- Where to acquire resources (CPU, Storage)?
 - building the next data center (Google)
 - getting EC2 resources and how much (smaller users)

- Where to place the service and the data?
 - VM placement
 - service/data migration

- Which location should serve a specific request?
 - Load balancing

Key feature: cost effectiveness ➔ resource management
Resource allocation in the Cloud

Key feature: cost effectiveness → resource management

• Where to acquire resources (CPU, Storage)?
 – building the next data center (Google)
 – getting EC2 resources and how much (smaller users)

• Where to place the service and the data?
 – VM placement
 – service/data migration

• Which location should serve a specific request?
 – Load balancing

focus on multidimensionality
This part

- Bin packing
 - Dual bin packing
 - Dual vector bin packing

- Online algorithms
 - Lower bounds
 - Placement algorithm

- Performance evaluation
 - Data sets
 - Results
Bin Packing and dual Bin Packing

- **Bin Packing**: What is the minimal number of bins required to pack all given packages?
- **Dual Bin Packing**: what is the maximum number of packages that can be packed in a set of given bins?
Multi-dimensional Bin-Packing

- Each physical resource (host, switch) is a bin with multi-dimensional capacities
- Each request is a collection of multi-dimensional elements
- Need to fill bins with elements w/o breaching capacities
Dual vector Bin-Packing

- What is the maximum number of packages that can be packed in a set of given bins?
 - Each bin and each package may have several dimensions
 - Much more complicated to solve
Online algorithms

- In order to analyze realistic scenarios where items (VM requests) arrive over time we consider the online variant of the VM placement problem where requests arrive dynamically – one at a time.
- This corresponds to the online variant of dual bin-packing.
- Typically, an online algorithm is analyzed by its performance, compared to the optimal solution, on a worst-case input.
- The competitive ratio of Alg:

\[R(Alg) = \lim_{N \to \infty} \left(\sup_{\sigma: Opt(\sigma) \geq N} \frac{Alg(\sigma)}{Opt(\sigma)} \right) \]
Optimization - Placement Goals

Focus on this for now

Which to use?

Maximize Revenue

Minimize energy consumption

Minimize customer rejection rate

Service robustness
Dual vector Bin-Packing

Given:
- A sequence of \(n \) \(d \)-dimensional vectors \(p_1, \ldots, p_n \)
- \(m \) \(d \)-dimensional bins \(b_1, \ldots, b_m \)

Find:
- A subset of the vectors, and a partitioning of this subset \(A_1, \ldots, A_m \) of this set into the \(m \) bins

Such that:
- In every dimension, \(\bar{A}_i \) is at most \(b_i \), where \(\bar{A}_i \) is the vector sum of items in \(A_i \), i.e. \(\bar{A}_i = \sum_{j \in A_i} p_j \)

The goal is to maximize the size of the selected subset
Any fair online algorithm has a competitive ratio of at least 1/2

Any fair online deterministic algorithm has a competitive ratio of at most 2/3

Any fair randomized online algorithm has a competitive ratio of at most 4/5

The competitive ratio of worst-fit (leave the most empty space) is exactly 1/2

The competitive ratio of best-fit (leave the least empty space) is $\frac{n}{2n-1}$
Multidimensional is hard

- For $d > 1$, there is no generic lower bound on the competitive ratio.

- In fact, a much stronger claim holds:
 - For $d > 1$ dimensions, *every* deterministic fair online d-dimensional dual vector bin-packing algorithm has 0 competitive ratio.
Random order ratio

- Changing the metrics - Compared to the optimal solution, on a random permutation of the worst-case input

- The random order ratio of Alg:

\[RC(Alg) = \lim_{N \to \infty} \left(\sup_{\sigma:Opt(\sigma) \geq N} \frac{E_L(Alg(\sigma_L))}{Opt(\sigma)} \right) \]

- Does Not help 😞

- Claim: For d>1 dimensions, there exists a fair online d-dimensional dual vector bin-packing algorithm with a diminishing random order ratio
Random order ratio

Proof Sketch:

- [...] For any ε, expected number of placed elements can be made $< \varepsilon$

- Claim: For $d>1$ dimensions, there exists a fair online d-dimensional dual vector bin-packing algorithm with a diminishing random order ratio
For two identical bins and two dimensions, there exists a random online dual vector bin-packing algorithm with competitive ratio of $\frac{1}{4}$ for accommodating inputs.

Algorithm:
- Randomly pick a dimension, D, and mark both bins as “open”
- For every item that arrives:
 - If its size in D is \leq the size in the other dimension, discard
 - If first bin is “open” and fits the item, place in first bin
 - If first bin is “closed”, place in second bin
 - If first bin is “open” and does not fit the item, close the bin and discard the item

Correctness:
- We are always placing items that are large in the selected dimension they always fit in the other
- At least half of the items are no smaller in size in one of the dimensions
- If we happen to choose the right dimension (probability $\frac{1}{2}$), we will fit at least $\frac{1}{2}$ of the items - The algorithm will fit $\frac{1}{2} \times n \times \frac{1}{2} - 1$
Main theoretical results

- For two identical bins and two dimensions, there exists a random online dual vector bin-packing algorithm with competitive ratio of $\frac{1}{4}$ for accommodating inputs.

- For two identical bins and two dimensions, and for accommodating inputs, there exists an online dual vector bin-packing algorithm that achieves $\frac{7}{16}$ approximation in linear time.

- There exists an online dual vector bin-packing algorithm with 8-lookahead that achieves $\frac{7}{16}$ competitive ratio for two identical bins in two dimensions.

- For d dimensions and k bins, with kd look ahead one can fit $\frac{1}{kd}$ items in the first bin.

- For k identical bins and d dimensions, there exists a random online d-dimensional dual vector bin-packing algorithm with competitive ratio of $\frac{1}{d^2} - k$.

Raz, Segall, Goldstein “Multidimensional Resource Allocation in Practice” Systor, 2017
Practical heuristics

For clarity, presented for $d=2$:

- **OBP** (Orientation-Based Placement) – try to place tall items in tall bins and wide items in wide bins
- **DistFromDiag** – Choose a bin such that distance of the corner of the new item from diagonal of the bin would be smallest
- **BUP** (Balanced Utilization Placement) – try to balance the overall utilized resources between the bins (extension of Worst Fit to d-dimensions)
- **Combined** – OBP + BUP as tie-breaker
- **No silver bullet !**

![Diagram](image)
Performance evaluation

Google Data

Percentage of Accommodated Requests vs. Percentage of Allocated Bins for different methods:
- Random
- DistFromDiag
- OBP
- BUP
- Combined
- Adaptive
Performance evaluation

Nokia Data

Percentage of Accomodated Requests

Percentage of Allocated Bins

- Random
- DistFromDiag
- OBP
- BUP
- Combined
- Adaptive
Performance evaluation

Amazon Data

![Graph showing the percentage of accommodated requests against the percentage of allocated bins for different methods: Random, DistFromDiag, OBP, BUP, Combined, and Adaptive. The graph illustrates the performance of these methods with varying allocation percentages.]
To REMEMBER

- Real placement problems in the cloud are **multidimensional**
- **Inherently** different from one dimension (and much harder)
- **Random order** ratio
- No silver bullet – it’s all about the **data**
Is this useful for NVF

- **Placement** = allocating physical resources given customer demand
 - a.k.a. virtual datacenter (VDC) embedding
Placement in OpenStack

- Reminder
 - OpenStack: open-source project for managing your own Cloud
 - Nova: OpenStack project that deals with Compute (VM) management
- OpenStack deals with a single DC
Placement in **OpenStack**

- OpenStack: open-source project for managing your own Cloud deals with a single data center
- Nova: OpenStack project that deals with Compute (VM) management

![Diagram showing host selection process](image)
Placement in OpenStack

- Comes with single built-in optimization parameter – **utilized RAM**
 - i.e., the score for each location is the utilized RAM (%) after placement
- Supports two policies
 - Place where function is maximized (Best Fit) = stack VMs
 - Place where function is minimized (Worst Fit) = spread VMs
- Allows adding custom metrics to be used in placement

Is this what we need in NFV placement?
INTO : Software Based Virtual Integrated Network
NFV + SDN
Distributed cloud networking = NFV + SDN

- **Key enablers**
 - Network function virtualization (NFV)
 - Software defined networking (SDN)

- **Ideal for next generation services**
 1) Network services
 - NFV
 2) Automation services
 - Smart X, IoT
 3) Augmented experience
 - Virtual X, Augmented X

Placement of Network Functions

- Where to place each function
 - One place (globally)
 - In each location
 - Statically – network planning
 - Dynamically (as needed) depends on demand

- What exactly is
 - The demand
 - The cost (of placing network functions)
 - The constraints (what can be put where)
 - A good placement (objective function)

A network optimization problem
Placement of Network Functions - A Model

Input
- A set of flows, each with a path and a demand for each of the possible network functions.
- A set of datacenters locations, each with a size.
- A set of network functions realizations, each with capacity (amount of clients to be served), size, and establishment cost.

Output
- A placement of copies of the realization of the network functions and a rerouting of the flow into the DCs.

Such that: The demand for each flow and for each function is satisfied, the size constraints are met, and the overall cost is minimal.
Input

- A set of flows, each with a path and a demand for each of the possible network functions.
- A set of datacenters locations, each with a size.
- A set of network functions realizations, each with capacity (amount of clients to be served), size, and establishment cost.

OUTPUT

- A placement of copies of the realization of the network functions and a rerouting of the flow into the DCs.

\[
\begin{align*}
\text{Min} & \quad \sum_{c \in C} \sum_{i \in f(c)} \sum_{u \in U} x_{cu} \cdot d(c, u) + \sum_{u \in U} \sum_{i=1}^{m} y_u \cdot p_u^i \\
\text{s.t.} & \quad \text{for each client } c, \text{ function } i \in f(c): \quad \sum_{u \in U} x_{cu}^i \geq r_c^i, \\
& \quad \text{for each client } c, \text{ node } u, \text{ function } i: \quad x_{cu}^i \leq y_u^i, \\
& \quad \text{for each node } u: \sum_{i=1}^{m} y_u^i \cdot w_u^i \leq w(u), \\
& \quad \text{for each function } i, \text{ node } u: \quad \sum_{c \in C} x_{cu}^i \leq y_u^i \cdot \mu^i, \\
& \quad \text{for each function } i, \text{ node } u: \quad y_u^i = 0 \quad \text{or} \quad y_u^i = 1.
\end{align*}
\]

Such that: The demand for each flow and for each function is satisfied, the size constraints are met, and the overall cost is minimal.
We have to think about the **MODEL**
where the goal is to **optimize REAL SYSTEMS**
Why modeling?

- **Real systems are very complex**
 - Different parameters that affect the result
 - Many configuration options
 - In the Network Function placement case:
 - depends on the actual VNF (vCPE, vCDN, ...)
 - on the underlying infrastructure (VM, container, ...)
 - many more

- **Need to capture the important (and only the important) aspects**
 - What is important?
 - How to quantify the affect of these (important) parameters
 - What are the criteria for success (optimization objective)
Addressing an optimization problem

- **Model the problem**
 - must select the “right” perspective
 - this is the most difficult part

- **Find an optimization scheme for the “theoretical” problem**
 - not always so easy
 - most problems are NP-hard
 - approximation or heuristics

- **Apply the solution to the original (real) problem**
 - need to modify the “theoretical” approximation algorithm

- **Evaluate expected performance**
 - in many cases difficult for lack of data (NFV)
Main theoretical result

Theorem:

There exists a bi-criteria ($O(1), O(1)$) approximation algorithm for the General NFV location problem

If we have only a single network function – the problem becomes the **Facility Location Problem**

- classic problem, studied extensively since the 1960s
- NP-hard problem, constant-factor approximation

If the network distances are all zero – the problem becomes the **Generalized Assignment Problem (GAP)**

- Well known problem, studied extensively since the 1990s
- NP-hard problem, constant-factor approximations
Algorithmic Approach

- NFV location problem is computationally hard (NP-hard)
- formulate the problem as an integer program
- relax integrality constraint: obtain a linear program
- compute an optimal fractional solution - lower bound on an optimal integral solution
- round fractional solution into an integral solution, while not increasing objective function by “too much” ...
- bi-criteria approximate solution:
 - size constraints are violated by constant factor
 - objective function value increases by constant factor
NFV Location Problem (uncap.)

for each function i and client c:

- fractional solution induces a probability distribution on the locations from which client c gets service of function i
- \(d(c,i) \) – expected distance; also contribution to LP
- \(B(c,2d(c,i)) \) - ball around c at radius 2\(d(c,i) \)
- it contains at least \(\frac{1}{2} \) the fractions providing service to c. (Markov’s inequality)
- c does not “care” from which location in the ball it gets service
- multiply all fractions by 2:
 - client c gets full service from locations in \(B(c,2(c,i)) \)
 - setup cost is multiplied by 2
 - size constraints are violated by at most a factor of 2
For each function i (separately):

“massage” the solution so that balls (of i) are disjoint

- c^* - ball of client having minimum (expected) radius
- c – client receiving non-zero service from the ball of c^*
- c is “removed” from the solution and “forgotten”
- eventually, c will get the service of i from the same location as c^*, paying at most $2d(c,i) + 4d(c^*,i) \leq 6d(c,i)$.

Recall $d(c,i)$ is the contribution of c to the LP.
NFV Location Problem (uncap.)

- define an instance of GAP:
 - each function i and each “surviving” ball of a client \rightarrow job
 - servers \rightarrow machines
 - fractional solution of NFV location \rightarrow fractional solution to GAP

- round instance of GAP:
 - determines location of functions and mapping of clients
 - setup costs remain the same as in fractional solution to GAP
 - distance costs remain the same as in fractional solution to NFV
 - size of servers is violated by at most a factor of 2

- approximation factor: $(6, 4)$
 - distances multiplied by 6 and setup costs multiplied by 2
 - sizes are multiplied twice by 2
Experimental evaluation

This network covers:

- 195 access locations (mostly within Europe and North America), about 260 links and almost 40 data centers

Input

- A set of flows, each with a path and a demand for each of the possible network functions.
- A set of datacenters locations, each with a size.
- A set of network functions realizations, each with capacity (amount of clients to be served), size, and establishment cost.
- Selected 400 random pairs of (source, destination), and determined a shortest path between each source and destination, unit demand per flow.
- Each such flow is associated with 1-4 network functions that were chosen randomly from a set of 30.
- The size of a network function varies.
- The size of data center was randomly selected in the range 200-500.
- Opening cost was constant.
Experimental evaluation

- Greedy
 - Go over all network function in an arbitrary order
 - For each such function
 - Find in a greedy way the best placement to satisfy the flows’ demand

randomly from a set of 30.
- The size of a network function varies.
- The size of data center was randomly selected in the range 200-500.
- Opening cost was constant.
Experimental evaluation

- **Greedy**
 - Go over all network function in an arbitrary order
 - For each such function
 - Find in a greedy way the best placement to satisfy the flows’ demand randomly from a set of 30.

- The size of a network function varies.
- The size of data center was randomly selected in the range 200-500.
- Opening cost was constant.
How good is this model?

- Service chaining example
 - CPE – FW – DPI

- Can we use the previous model for function placement in this case?

- Can we find a better model?

Source: ETSI Ongoing PoC
How good is this model?

- The order of the functions (per flow) is given
- No pre-defined paths
Service chain model – take 2

• Given
 - Set of services
 - Set of demands

• Find
 - Function placement
 - Flow routing
 - Cloud resource allocation
 - Network resource allocation

• Such that
 - Demands are satisfied
 - Overall operational cost is minimized
cloud network flow
Service Model

Functions:
• \((\phi, 1)\)
• \((\phi, 2)\)
• \((\phi, M_\phi)\)

Commodities:
• \((d, \phi, 0)\)
• \((d, \phi, 1)\)
• \((d, \phi, M_\phi - 1)\)
• \((d, \phi, M_\phi)\)

- A network service \(\phi \in \Phi\) is described by a chain of \(M_\phi\) virtual network functions (VNFs)
- \((\phi, i)\) denotes the i-th function of service \(\phi\)
- \((d, \phi, i)\) denotes the output of the i-th function of service \(\phi\) for destination \(d\)
- Function \((\phi, i)\) has resource requirement \(r^{(\phi, i)}\) processing resource units per flow unit, scaling factor \(\xi^{(\phi, i)}\) output flow units per input flow unit
Service chain model – take 2

\[
\min \sum_{(u,v)} w_{uv} y_{uv}
\]

s.t.

\[
\sum_{v \in \delta^- (u)} f^{(d, \phi, i)}_{uv} = \sum_{v \in \delta^+ (u)} f^{(d, \phi, i)}_{uv} \quad \forall u, d, \phi, i
\]

\[
f^{(d, \phi, i)}_{p(u), u} = \xi (\phi, i) f^{(d, \phi, i-1)}_{u, p(u)} \quad \forall u, d, \phi, i
\]

\[
\sum_{(d, \phi, i)} f^{(d, \phi, i)}_{uv} \leq y_{uv} \leq c_{uv} \quad \forall (u, v)
\]

\[
f^{(d, \phi, 0)}_{s(u), u} = \lambda_u (d, \phi) \quad \forall u, d, \phi
\]

\[
f^{(d, \phi, M_{\phi})}_{u, a(u)} = 0 \quad \forall d, \phi, u \neq d
\]

\[
f^{(d, \phi, i)}_{uv} \geq 0, \ y_{uv} \in \mathbb{Z}^+ \quad \forall (u, v), d, \phi, i
\]

Cost Function

Combined Flow Conservation

Service Chaining

Capacity

Sources and Demands

Fractional flows

Integer resources
Service chain model – take 2

\[\min \sum_{(u,v)} w_{uv} y_{uv} \]

s.t.

\[\sum_{v \in \delta^{-}(u)} f^{(d, \phi, i)}_{v, u} = \sum_{v \in \delta^{+}(u)} f^{(d, \phi, i)}_{u, v} \quad \forall u, d, \phi, i \]

\[f^{(d, \phi, i)}_{p(u), u} = \xi^{(\phi, i)} f^{(d, \phi, i-1)}_{u, p(u)} \quad \forall u, d, \phi, i \]

\[\sum_{(d, \phi, i)} f^{(d, \phi, i)}_{u, v} \leq y_{uv} \leq c_{uv} \quad \forall (u, v) \]

\[f^{(d, \phi, 0)}_{s(u), u} = \lambda^{(d, \phi)}_u \quad \forall u, d, \phi \]

\[f^{(d, \phi, M_{\phi})}_{u, u} = 0 \quad \forall d, \phi, u \neq d \]

\[f^{(d, \phi, i)}_{u, v} \geq 0, \ y_{uv} \in \mathbb{Z}^+ \quad \forall (u, v), d, \phi, i \]
Main Theoretical Result

There is a fast approximation algorithm for the fractional NSDP that produces an ϵ approximation solution in time $O(m^2nL/\epsilon)$.

Use dynamic evolution of underlying queuing system to construct an iterative approximation to original static problem.

Performance

![Diagram with arrows and nodes]

- $r = 1$
- $r = 3$
- $r = 2$
- $r = 2$

![Graphs and charts]

- Cost vs. Iterations
- Flow Conservation Violation
- Processing Flow Rate

- DCNC, $V=40$
- QNSD, $V=40$, $\theta = 0$
- QNSD, $V=150$, $\theta = 0.9$

- Service 1, Function 1
- Service 1, Function 2
- Service 2, Function 1
- Service 2, Function 2

Node Index:

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
How good is this model?

• Previous models address placement in node (DC) granularity

• How about physical host granularity?

• Placement of VNF VMs in the physical hosts

Source: ETSI Ongoing PoC
So what did we do today?

- Resource allocation
- Placement in the Cloud
 - multidimensional dual bin packing
- Placement in Open Stack
- Placement of NF chaining
 - first model
 - second model
- Is it good enough
 - to be used in practice
- Next week – yet a different model and more on implementation details and performance