Today’s Class

- Algorithms that predict, learn and optimize in an online manner suited for streams:
 - Act and adapt upon every example
 - Keep very small state
 - Computation per example is small
- The algorithms are all simple and somewhat intuitive
 - Their analysis – less so
- Just a sample from a huge field
Online Learning - Definition

- A model of induction that learns one instance at a time

Typical setting: the algorithm faces a stream of trials

- World presents input to the algorithm
 - Input can be stochastic, adversarial, conforming to some concept in a concept space, etc.
 - Algorithm takes an action/decision with respect to the input
 - World reveals some outcome or label to the algorithm
 - Algorithm adapts internal model based on <input,outcome> pair

- Goal: minimize some error/loss/regret
 - With provable bounds

Learning from Experts - Setting

- We are faced with a binary prediction problem
 - E.g. “will it rain today?”

- To our help come n experts, each providing their own opinions x₁,...,xₙ

- By applying some function f(x₁,...,xₙ), we reach a decision (“I bet it will rain”)

- In time, we learn whether our prediction was correct

- This situation happens repeatedly with the same set of experts

- Our goal: learn a “good” f()
Learning from Experts: Target Function

- Our goal: learn a “good” f
 - How do we measure whether f is “good”?
- This class: worst-case competitive analysis
- At all times t, the number of wrong predictions we’ve made should be competitive with the best expert so far
 - The expert that made the fewest prediction mistakes till time t
- No assumptions are made about the quality of the experts
 - They may all be making random predictions
 - They may be adversarial
 - The quality of the experts may change arbitrarily over time
- The following algorithms and proofs are due to Littlestone and Warmuth, from 1994

Learning from Experts: Weighted Majority Algorithm

1. $w_1 = w_2 = ... = w_n \leftarrow 1$ // expert weights
2. Foreach prediction problem:
 1. Collect predictions $x_1, ..., x_n$ from the experts
 2. Apply the weighted majority rule:
 - Output 1 iff $\sum_{i:x_i=1} w_i \geq \sum_{j:x_j=0} w_j$
 3. Receive the correct answer b
4. Foreach j s.t. $x_j \neq b$: // foreach wrong expert
 1. $w_j \leftarrow w_j/2$ // reduce weight by half
Weighted Majority Algorithm: Analysis

- Notations:
 - \(M \): # of mistakes made by the weighted majority algorithm
 - \(m \): # of mistakes made by the best expert so far
 - Let \(W \) denote the sum of all weights, \(W = \sum w_i \); initially, \(W = n \)
- Theorem: \(M \leq (\log 4/3)^{-1}(m + \log n) \approx 2.41 (m + \log n) \)
- Proof:
 - Each prediction mistake reduces the weights by at least \(\frac{1}{4} \)
 - Therefore, \(W \leq n (3/4)^m \)
 - At the same time, \(W \geq 2^{-m} \) (the weight of the best expert so far)
 - So \(2^{-m} \leq n (3/4)^m \), hence \(M \leq (\log 4/3)^{-1}[m+ \log n] \)

Weighted Selection Algorithm: Better, Randomized Variant

1. \(w_1 = w_2 = \ldots = w_n \leftarrow 1 \) // expert weights
2. Foreach prediction problem:
 1. Collect predictions \(x_1, \ldots, x_n \) from the experts
 2. Output \(x_i \) with probability \(w_i/\sum w_j \)
 3. Receive the correct answer \(b \)
 4. Foreach \(j \) s.t. \(x_j \neq b \): // foreach wrong expert
 1. \(w_j \leftarrow w_j \ast \beta \) // multiply weight by \(\beta \)

- \(\beta \in (0,1) \) is a parameter (and the subject of optimization)
Weighted Selection Algorithm: Analysis

- Slightly modified notations:
 - \(M \): expected number of mistakes made by the algorithm
 - \(m \): number of mistakes made by the best expert so far
 - \(W_t \): the sum of weights before \(t \)th prediction (\(W_1 = n \))
 - \(F_i \): fraction of weight on the wrong experts at time \(i \)
- Note that \(M = \sum_i F_i \)
- Theorem: \(M \leq \left[\ln n - m \ln \beta \right] / (1-\beta) \)

Proof:
\[
W_{t+1} = W_t(1-F_t) + W_tF_t\beta = W_t(1-F_t+F_tF_t) = W_t(1-(1-\beta)F_t)
\]
Therefore, \(W_{t+1} = n \sum_{i=1,...,t} [1-(1-\beta)F_i] \)
- At the same time, \(W_{t+1} \geq \beta^m \) (weight of best expert so far)
- So: \(n \sum_{i=1,...,t} [1-(1-\beta)F_i] \geq \beta^m \)
- \(\ln n + \sum \ln [1-(1-\beta)F_i] \geq m \ln \beta \) \(\) // taking \(\ln \) from both sides
- \(-\ln n - \sum \ln [1-(1-\beta)F_i] \leq -m \ln \beta \) \(\) // negating
- \(-\ln n + (1-\beta)\sum F_i \leq -m \ln \beta \) \(\) // since \(-\ln (1-x) > x \)
- \(-\ln n + (1-\beta)M \leq -m \ln \beta \) \(\) // recall that \(M=\sum F_i \)
- The result follows
Online Learning from Examples of a Concept Class

- Typical scenario is a binary classification task: given input instances, we should classify them as 0 or 1
 - We focus on input n-dimensional Boolean vectors, i.e. \(\{0,1\}^n \)
- Online setting: after making our classification prediction, we are given the true label of the input
- Goal is to learn a “good” function \(f: \{0,1\}^n \rightarrow \{0,1\} \)
 - This class: “good” means with bounded absolute error
- Concept-class learning: when we know the space (family) of functions that the true classification function \(f \) comes from
 - i.e. a subset of all Boolean functions over \(n \) variables

Concept Class of Sparse Monotone Disjunctions

- A Boolean disjunction over \(n \) variables \((x_1,\ldots,x_n) \):
 \[x_2 \lor \neg x_5 \lor x_9 \lor x_{11} \lor \neg x_{17} \]
- Monotone disjunction: no negation operators; all variables appear as-is or are not part of disjunction
 \[x_2 \lor x_5 \lor x_9 \lor x_{11} \lor x_{17} \]
- Sparse disjunctions: number of literals in the disjunction is much smaller than \(n \)
 - Most variables do not participate, i.e. are irrelevant
- The concept class of interest in the next few slides: disjunctions that are both monotone and sparse
Winnow Algorithm for Learning Sparse Monotone Disjunctions

1. \(w_1 = w_2 = ... = w_n \leftarrow 1 \) // feature weights
2. Foreach input Boolean vector \(x = (x_1, ..., x_n) \):
 1. \(z = (\sum w_i x_i \geq n) \); output \(z \)
 2. Receive the correct label \(y \)
 3. If (\(z = 0 \) and \(y = 1 \)) // false negative
 1. Foreach \(j \) s.t. \(x_j = 1, w_j \leftarrow w_j \times 2 \)
 4. If (\(z = 1 \) and \(y = 0 \)) // false positive
 1. Foreach \(j \) s.t. \(x_j = 1, w_j \leftarrow 0 \)

- Theorem: on a monotone disjunction of \(r \) variables, Winnow makes at most \(1+2r(1+\log n) \) mistakes
- Note: there are \(2^{O(r \log n)} \) such disjunctions

Winnow Algorithm: Analysis

- Theorem: on a monotone disjunction of \(r \) variables, Winnow makes at most \(1+2r(1+\log n) \) mistakes
- Proof:
 - Let \(R \) denote the set of the \(r \) variables in the disjunction
 - The weight of any \(x_j \in R \) never decreases, as \(x_j = 0 \) in any false positive
 - Once the weight of any \(x_j \in R \) reaches \(n \), it will never participate in a false negative again
 - Any \(x_j \in R \) will be doubled at most \(1+\log(n) \) times
 - Any false negative doubles the weight of at least one of the \(r \) members of \(R \)
 - Hence, the number of false negatives is bounded by \(r(1+\log n) \)
Winnow Algorithm: Analysis (cont.)

- Theorem: on a monotone disjunction of \(r \) variables, Winnow makes at most \(1+2r(1+\log n) \) mistakes

Proof (cont.):
- From prev. slide: the number of false negatives \(\leq r(1+\log n) \)
- Let \(W \) denote the sum of all weights, \(W=\sum w_i \)
- Any false negative increases \(W \) by at most \(n \)
- Any false positive decreases \(W \) by at least \(n \)
- \(W \) starts at \(n \), and never becomes negative
- Hence, number of false positives \(\leq 1 + \) number of false negatives
- Conclusion: number of mistakes \(\leq 1+2r(1+\log n) \)

Concept Class of Linearly Separable Sets of Points in \(\mathbb{R}^d \)

- Let \(P \) (=positive) and \(N \) (=negative) be two sets of points in \(\mathbb{R}^d \).
- \(P \) and \(N \) are called linearly separable if there exists a weights vector \(w \in \mathbb{R}^d \) such that:
 - For all \(x \in P \), \(\langle w, x \rangle > 0 \)
 - For all \(x \in N \), \(\langle w, x \rangle < 0 \)
- The hyperplane \(\langle w, x \rangle = 0 \) separates the two sets
- The vector \(w \) is perpendicular to the separating hyperplane
Online Learning a Separating Plane

- We will receive, in streaming fashion, vectors in \mathbb{R}^d
- At each time t, we will hold a vector w_t and decide whether x_t belongs to P or N according to $\text{sign}(\langle w_t, x_t \rangle)$
- We will get the correct association of x, and if wrong, we will update w
- Goal: do not make too many mistakes

Preliminaries

- Let w^{**} be a separating vector, and let P and N be finite sets of points
- Since P, N are finite, there is some minimal ϵ such that
 - For all $x \in P$, $\langle w^{**}, x \rangle \geq \epsilon$
 - For all $x \in N$, $\langle w^{**}, x \rangle \leq \epsilon$
- Since any scaling of w^{**} is also a separating vector, w.l.o.g. we can assume that w^* is the smallest-norm vector satisfying:
 - For all $x \in P$, $\langle w^*, x \rangle \geq 1$
 - For all $x \in N$, $\langle w^*, x \rangle \leq 1$
The Perceptron Algorithm

1. \(w_0 \leftarrow 0, \ t \leftarrow 0 \) // initialization
2. Foreach input vector \(x \in \mathbb{R}^d \):
 1. \(z = \text{sign}(\langle w, x \rangle) \); output \(z \)
 2. Receive the correct label \(y \in \{-1, +1\} \)
 3. If \((z = y) \) // mistake
 1. \(w_{t+1} = w_t + y \times x \) // add/subtract \(x \) to \(w \)
 2. \(t++ \)

Let \(m \) denote the total number of mistakes made
In the next slides, we will prove that \(m \) cannot grow too much – the number of mistakes is bounded

The Perceptron Algorithm - Analysis

Observations:
- The cosine of \(w^* \) and \(w_m \): \(\langle w^*/||w^*||, w_m/||w_m|| \rangle \geq 1 \)
- Let \(x_t \) be the example of the \(t+1 \) error. Then,
 - \(\langle w_{t+1}, w^* \rangle = \langle w_t + y_t x_t, w^* \rangle = \langle w_t, w^* \rangle + y_t \langle x_t, w^* \rangle \geq \langle w_t, w^* \rangle + 1 \)
 - Hence, \(\langle w_m, w^* \rangle \geq m \)
- \(||w_{t+1}||^2 = ||w_t||^2 + 2 y_t \langle x_t, w_t \rangle + ||x_t||^2 \leq ||w_t||^2 + ||x_t||^2 \)
 - Denote by \(R \) the maximal value of \(||x|| \) in the input
 - Hence, \(||w_{t+1}||^2 \leq ||w_t||^2 + R^2 \), so \(||w_m||^2 \leq mR^2 \)
The Perceptron Algorithm - Analysis

Our three observations:
1. \(\langle w^*/\|w^*\|,w_m/\|w_m\| \rangle \leq 1 \)
2. \(\langle w_m,w^* \rangle \geq m \)
3. \(\|w_m\|^2 \leq mR^2 \)

Together, we reach a bound on \(m \):
- \(m/\|w^*\|R\sqrt{m} \leq \langle w^*/\|w^*\|,w_m/\|w_m\| \rangle \leq 1 \)
- \(m \leq \|w^*\|R\sqrt{m} \)
- \(m \leq \|w^*\|^2R^2 \)

The bound on \(m \) depends on the norm of \(w^* \) and the maximal norm of any input vector \(x \)

Stochastic k-Multi-Armed Bandit

(unknown) expected rewards

\(\mu_1 \quad \mu_2 \quad \mu_k \)

Arms pulls are independent

All rewards are in \([0,1]\)

An instance of both Reinforcement Learning (online learning from observed rewards) and Online Optimization

11 June 2017 236620 Big Data Technology
Target: Regret Minimization

- A stochastic k-MAB algorithm accrues reward as time goes by.
- How much reward does it “leave on the table” due to not knowing the reward distributions of the arms?
- Definition: the regret of an algorithm till time t is:
 \[
 R(t) = t \mu - \sum_{i=1}^{t} \mu(A_i)
 \]
 Where μ is the expected reward of the best arm and A_i is the arm pulled by the algorithm at time i.

UCB1 Algorithm

[Auer, Cesa-Bianchi, Fischer; 1998]

1. Foreach $j = 1, ..., k$ // initialization
 1. Play arm j
 2. $x_j \leftarrow$ observed reward // tracks avg. reward
 3. $n_j \leftarrow 1$ // j-plays counter
2. $nt \leftarrow k$ // trial counter
3. Foreach trial:
 1. Play arm j that maximizes $x_j + \sqrt{2\ln(nt)/n_j}$
 2. $x_j \leftarrow (n_j \cdot x_j + \text{current trial's reward}) / (n_j + 1)$
 3. n_j++
 4. $nt++$
UCB1 Algorithm: Claim

- **Notation:** for any non-optimal arm i with expected reward μ_i, Δ_i is defined as $\mu - \mu_i$
- **Theorem:** The expected regret of UCB on a stochastic k-armed bandit instance after n trials is at most
 $$8 \ln(n) \left(\sum_{i: \mu_i(0) < \mu} \Delta_i^{-1} \right) + \left(1 + \frac{\Pi^2}{3} \right) \left(\sum \Delta_i \right)$$
- **Observe** that the expected regret can be written as
 $$8\ln(n) \times c_1 + c_2,$$
 where $c_1 = O(k/\Delta_{\min})$ and $c_2 = O(k\Delta_{\max})$
- **Algorithm exemplifies** “optimism in the face of uncertainty” principle

ε-Greedy Randomized Policy

[Auer, Cesa-Bianchi, Fischer; 1998]

- Assume we know some aspect of the hardness of our k-MAB instance – specifically, that we know Δ_{\min}, the difference in expectation between the two best arms
- The ε-Greedy randomized policy for playing the arms is:

1. Choose a constant $d \leq \Delta_{\min}$ and let c be a constant
2. Define the sequence $\varepsilon_n = \min\{1, ck/d^2n\}
3. Foreach $n = 1, 2, ...$
 1. Let j be an arm with maximal reward till now; play arm j w.p. $1-\varepsilon_n$ (exploit),
 2. and any other arm $i \neq j$ w.p $\varepsilon_n/(k-1)$ (explore)
ε-Greedy Randomized Policy

1. Choose a constant \(d \leq \Delta_{\min}\) and let \(c\) be a constant
2. Define the sequence \(\varepsilon_n = \min\{1,ck/d^2n\}\)
3. Foreach \(n = 1,2,...\)
 1. Let \(j\) be an arm with maximal reward till now;
 play arm \(j\) w.p. \(1-\varepsilon_n\) (exploit),
 and any other arm \(i \neq j\) w.p. \(\varepsilon_n/(k-1)\) (explore)

 - Whenever \(c > 5\) and whenever \(n \geq ck/d\), the probability of playing a suboptimal arm at time \(n\) is bounded by \(c/nd^2 + o(1/n)\)
 - This bounds the instantaneous regret – the regret at each step
 - Overall regret is logarithmic in \(n\)
 - In practice, typically performs better than UCB1

Many Variants of Stochastic K-MAB

- Mortal Bandits – the set of bandits changes (some die, some are born) at each timestamp
- Sleeping Bandits – the set of bandits is fixed, but some are unavailable (“asleep”) at each timestamp
- Dueling Bandits – pull two arms at each time \(t\), and receive a binary indication of which of them was better
- Contextual Bandits – arm pulls are associated with context, which affects arms’ effectiveness
- ...

11 June 2017 236620 Big Data Technology 27