Information-Theoretic Security
Overview

• **Goal**: Obtain information-theoretic security against an **active** adversary.
 – Active adversary may arbitrarily modify corrupted players’ behavior.
 – Consequently, simulator must also play a more active role.

• **Realizable adversary structures**:
 – **Perfect security,** $Q^{(3)}$ structures ($t < n/3$)
 - $t < n/3$ necessary for realizing broadcast (or Byzantine Agreement)
 - $t < n/3$ optimal even when broadcast is assumed
 – **Statistical security,** $Q^{(2)}$ structures ($t < n/2$), assuming broadcast

• **Today**: Perfect security using CNF secret sharing
 – Pros: simple, general.
 – Con: inefficient when n is large, even for threshold structures.

• **Not in this lecture**: Perfect security using Shamir
 – Efficient for threshold structures.
How to Flip a Coin?

- Nontrivial because of rushing
- Reduces to securely computing modular sum
 - Output = sum of randomly chosen inputs
- Variant of previous protocol for sum:
 - R1: share x_i according to L
 - R2: add up the n received shares and send the result m_i to all players
 - output the sum of all m_i.
- Security problems
 - P_i may send different m_i to different players
 - use broadcast to ensure consistency
 - P_i may choose m_i after learning the other m_j
 - use redundant L (e.g., t-private with $t < n/3$) to allow error-correction
 - works if players are honest during R1
 - what can be done against dishonest behavior during R1?
Verifiable Secret Sharing

• Verifiable Secret Sharing for L is a T-secure protocol realizing the following functionality VSS_L:
 – P_1 (dealer) has inputs s, ρ; other players have no input.
 – Players’ outputs are $L(s, \rho)$
 – Intended use: dealer picks ρ at random

• Features
 – Privacy: if dealer is uncorrupted and ρ is picked at random, adversary learns nothing about s.
 – Consistency: outputs of uncorrupted players are consistent with $L(s^*, \rho^*)$ for some s^*, ρ^*
 • even if dealer is corrupted!
 – Correctness: if dealer is uncorrupted, then consistency holds with $s^* = s$.

T-Robustness

- A secret-sharing scheme is **T-robust** if, after s has been shared, a T-adversary cannot prevent the correct reconstruction of s.

![Diagram showing the secret-sharing process with referrer and players P_1, P_2, P_3, P_4.]

- **Adversary’s goal:** create ambiguity with nonzero probability
 - May assume that adversary knows all shares s_i
 - **Key point:** Referee does not know which players are corrupted

s_i are consistent with $L(s,\rho)$
Robustness (contd.)

• Claim: a T-private L is T-robust iff T is of type Q(3).
 – Def. T is of type Q(3) if for each \(T_1, T_2, T_3 \in T \), \(T_1 \cup T_2 \cup T_3 \neq [n] \)
 – Threshold case: \(t < n/3 \)

• If:
 – Suppose towards contradiction that ambiguity is possible.
 – There is a corrupt share vector \(s' \) which is T-consistent with two valid share vectors \(s^1, s^2 \) corresponding to distinct secrets \(s^1, s^2 \)
 – Define \(T_1 = \{ i : s'_i \neq s^1_i \} \), \(T_2 = \{ i : s'_i \neq s^2_i \} \), \(T_3 = [n] \setminus (T_1 \cup T_2) \)

From the correctness of L, \(T_3 \) must be in T

\[
\begin{align*}
T_1 & = \{ \text{indices where } s'_i \neq s^1_i \} \\
T_2 & = \{ \text{indices where } s'_i \neq s^2_i \} \\
T_3 & = [n] \setminus (T_1 \cup T_2) \\
\end{align*}
\]
Robustness (contd.)

• **Claim:** A T-private L is T-robust iff T is of type $Q^{(3)}$.

• **Only if:**

 - Suppose there are $T_1, T_2, T_3 \in T$ such that $T_1 \cup T_2 \cup T_3 = [n]$
 - Wlog T_1, T_2, T_3 are pairwise disjoint
 - Let s^1, s^2 be distinct secrets, and s^1, s^2 corresponding share vectors which agree on all their T_3-entries.
 - Such s^1, s^2 exist by the privacy requirement (o/w T_3 could perfectly distinguish between s^1, s^2).
 - Define a corrupt share vector s' which agrees with s^1 on T_1, with s^2 on T_2, and with both on T_3.
 - Adversary can turn valid shares into s'
 - s' is T-consistent with both s^1, s^2!
Robustness (contd.)

• On the cost of reconstruction
 – Naïve approach: check all possible \((s, \rho)\)
 – Better approaches for useful schemes
 • Shamir’s scheme: use efficient decoding algorithm for Reed-Solomon codes.
 • CNF scheme: use majority vote to recover each additive share \(s_T\)
 • In fact, above schemes allow reconstruction of the original share vector (not only the secret).

• Significance of \(T\)-robustness
 – Suppose \(s\) has been shared using \(\text{VSS}_L\), where \(L\) is \(T\)-robust, and then each player sends its share to the referee.
 • Corrupt players may send incorrect shares
 – If dealer is honest, referee will correctly reconstruct \(s\).
 – Even when dealer is corrupted, at the end of the VSS it is effectively committed to unique secret \(s^*\) which it cannot change later.
Application: Simultaneous Broadcast

- \(\text{SB}(x_1, \ldots, x_n) = x_1 \circ x_2 \circ \ldots \circ x_n \)
- **Note:** Secure computation of \(\text{SB} \) \(\rightarrow \) Coin Flipping

- Fix some \(T \)-private \(L \) where \(T \) is of type \(Q^{(3)} \).

Perfect \(T \)-secure reduction from \(\text{SB} \) to \(\text{VSS}_L \):

- Each \(P_i \) picks random \(\rho_i \) and calls \(\text{VSS}(x_i, \rho_i) \) to share \(x_i \)
- Players exchange all shares
 - No need for broadcast!
- For each \(j \), \(P_i \) outputs the unique \(x_j^* \) which is \(T \)-consistent with its \(n \) shares.

Q: How can the protocol be generalized to compute an arbitrary linear func.?
Simultaneous Broadcast (contd.)

- **T-secure reduction from SB to VSS\(_L\):**
 - Each \(P_i \) calls VSS\((x_i, \rho_i)\) to share \(x_i \)
 - Players exchange all shares
 - For each \(j \), \(P_i \) outputs the unique \(x_j^* \) which is T-consistent with its \(n \) shares.

- **Simulating an active adversary \(A \) corrupting \(T \):**
 - Simulator’s input: \(x_T \)
 - Outputs are not yet available!
 - Simulator picks random \(\rho_T \), runs \(A \) on \((x_T, \rho_T)\), and “extracts” its effective inputs \(x_T^* \) from messages \((x_i^*, \rho_i^*)\) it sends to VSS oracle.
 - If no message is sent, a default value is taken (same as in protocol).
 - Simulator sends \(x_T^* \) to TP, and receives an \(n \)-tuple of outputs \(y^* \).
 - Messages from VSS oracle and uncorrupted players are simulated as follows:
 - For each \(i \in T \), the corresponding \(n \)-tuple of messages is \(L(y_i^*, \rho_i^*)\)
 - For each \(i \notin T \), the corresponding \(n \)-tuple of messages is \(L(y_i^*, \rho_i) \), where \(\rho_i \) is random.
Composition Revisited

• Motivation
 – **Inwards**: supports modular design of a protocol using sub-protocols.
 – **Outwards**: guarantees that a protocol is safe to use as a building block in higher-level applications.

• Protocol composition in passive case is relatively simple.

• Active case is more problematic.
 – First observed in the context of Zero-Knowledge Proofs

• Major distinction between
 – Sequential composition: make one call to TP in each round
 – Universal composition: arbitrary calls to TP

• Our security definitions support* sequential composition
 * In active computational case, need to slightly strengthen definition by allowing adversary and simulator to be nonuniform (get an “advice”).

• To get universal composition, stronger definition is needed
 – **UC-security** allows environment to *interactively* distinguish between REAL and IDEAL.
 – Natural information-theoretic protocols are in fact UC-secure
CNF-based VSS

• Let L be the T-private CNF scheme.
 – A secret $s \in F$ is shared as follows:
 • Additively share s into $\sum s_H$, where H ranges over all complements of maximal subsets in T.
 • Send each additive share s_H to all players in H.

• Intuition for VSS
 – Difficulty: guarantee consistency even when dealer is corrupted
 – Key point: All players in H can safely exchange their received values of s_H over secure channels without violating privacy.
 – Whenever an honest player finds inconsistency, it can safely broadcast a complaint forcing dealer to broadcast s_H.
 • No privacy concern: adversary can cause complaints only if it corrupts the dealer or some player in H. In both cases it already knows s_H.
 • If dealer does not comply, it is “disqualified” and a default sharing is used (e.g., all shares are 0). Whether dealer is disqualified is public.
 – After all complaints are resolved, the shares held by honest players are consistent with a valid L-sharing of some secret s^*.
CNF-based VSS: The Protocol

• R1:
 – Using s, ρ, dealer creates additive sharing $s = \sum s_H$, where H ranges over all complements of maximal subsets in T, and sends each additive share s_H to all players in H.

• R2:
 – For each set H, each player in H sends to all other players in H its received value of s_H.

• R3:
 – If a player in H observes inconsistent values of s_H, it broadcasts a complaint: “reveal s_H”.

• R4:
 – Dealer broadcasts all s_H for which a complaint has been made.

• Output:
 – Each P_i outputs all received s_H such that $i \in H$, overriding original values with values broadcast by the dealer.
Robust Partial Functionalities

- Recall: partial functionality is defined over a subset X of the inputs.
- How does one define a reduction to a partial functionality?
 - Active adversary may cause input sent to TP to be illegal.
- A partial functionality g is T-robust if it is possible to (efficiently) determine $g(x)$ from a T-corrupted version of x.
 - If L realizes a $Q^{(3)}$ structure T, then MS_L is T-robust
- A T-secure reduction from f to a T-robust g is well defined.
 - TP returns the unique value of g consistent with the given inputs.
Securely Reducing f to VSS+MS

• Let L be a linear secret-sharing scheme over F realizing a $Q^{(3)}$ structure T, and let $MS=MS_L$.
 – MS is T-robust
• Let C be an arithmetic circuit over F evaluating f.

- **Input sharing stage:**
 - Each player calls VSS_L to share its inputs.
 • Now all inputs are “fixed”.
- **Computation stage:**
 - Suppose a,b were already shared, and let $[a],[b]$ denote their share vectors.
 – $c=a+b$: let $[c]←[a]+[b]$ (no interaction)
 – $c=a*b$: let $[c]←MS([a],[b])$
- **Output reconstruction stage:**
 - For each output z, player exchange all shares $[z]$ and output the unique secret which is T-consistent with received shares.
Reducing MS_{CNF} to VSS_{CNF}

- Let $L = T$-private CNF for some $Q^{(3)}$-structure T.
- **Inputs:** L-shares $[a],[b]$ of secrets a,b, where $a=\sum a_H$, $b=\sum b_H$, and each a_H, b_H are included in the inputs of all players from H.
 - Sets H are complements of sets in $T \Rightarrow$ each H_1,H_2,H_3 intersect
- **Outputs:** random CNF shares $[c]$ of $c = ab = \sum a_H b_H$.

Sharing the terms
- For each H,H', players in $H \cap H'$ evaluate $m_{H,H'} = a_H b_H$, and VSS this value.
- Let $[m_{i,H,H'}]$ denote the shares originating from P_i.
 - **Note:** some $i \in H \cap H'$ must be honest. Otherwise, if $T \in T$ contained all players in $H \cap H'$, $H' = [n] \setminus T$ would satisfy $H \cap H' \cap H'' = \emptyset$.

Revealing differences
- Players reconstruct $m_{j,H,H'} - m_{j',H,H'}$ for each successive j,j' in $H \cap H'$
 - Done by locally computing $[m_{j,H,H'} - m_{j',H,H'}]$ and exchanging shares.
 - If all $|H \cap H'| - 1$ differences are 0, all values $m_{i,H,H'}$ are good and players set $[m_{H,H'}] = [m_{i,H,H'}]$ for an arbitrary $i \in H \cap H'$.
 - Otherwise, players reconstruct a_H, b_H, and let $[m_{H,H'}] = L(a_H b_H, 0)$

Adding the terms
- Players locally compute and output $[c] = \sum [m_{H,H'}]$.
Shamir-Based VSS

- How can honest players guarantee that their shares are consistent?
 - Can’t exchange shares as in CNF-based VSS
 - Idea: “grill” the dealer via two-level sharing

\[f_2(x) = 4x + 1 \]
\[g_2(y) = 2y + 5 \]
given to P_2

\[F(i,j) = s_{ij} \]

primary shares \(s_i \)

secondary shares
Example: $t=1$, $n=5$

- Dealer picks a random bivariate polynomial $F(x,y)=s+rx+ry+ryxy$ and sends to each player P_i the polynomials $f_i(x)=F(x,i)$ and $g_i(y)=F(i,y)$.
- Each P_i privately sends to each P_j the common secondary shares $s_{ji}=f_i(j)$, $s_{ij}=g_i(j)$. P_j compare these values to $s_{ji}=g_j(i)$, $s_{ij}=f_j(i)$ (respectively) and if they don’t match it broadcasts an inconsistency complaint $\{i,j\}$.
- Let C be a “good clique” of size 4: a set of 4 players which are not involved in any complaint. If no such C exists, dealer is disqualified.
- Each player $i \in C$ lets $s_i=g_i(0)$
- The player $j \not\in C$ recovers s_j by applying error-correction to the 4 secondary shares s_{ji}^i received from $i \in C$.

```
 8 15 X2 29 36
 7 13 19 25 31
 6 11 16 21 26
 5 9 13 17 21
 4 7 10 13 16

s=1
 3 5 7 9 11
```
General Protocol, $n>4t$

- Dealer picks a random bivariate polynomial $F(x,y)$ with degree $\leq t$ in each variable and free coefficient s. It sends to each player P_i the polynomials $f_i(x)=F(x,i)$ and $g_i(y)=F(i,y)$.
- Each P_i privately sends to each P_j the common secondary shares $s^{ij}_i=f_i(j)$, $s^{ji}_i=g_i(j)$. P_j compare these values to $s^{ji}_j=g_j(i)$, $s^{ij}_j=f_j(i)$ (respectively) and if they don’t match it broadcasts an inconsistency complaint $\{i,j\}$.
- Let C be a “good clique” of size $3t+1$: a set of $3t+1$ players which are not involved in any complaint. If no such C exists, dealer is disqualified.
- Each player $i \in C$ lets $s_i=g_i(0)$
- The player $j \notin C$ recovers s_j by applying error-correction to the $3t+1$ secondary shares s^{ij}_j received from $i \in C$.

- Problem: How to efficiently find a good clique?
 - Noninteractive solution I: if $n>5t$, then a factor-2 approximation algorithm for vertex cover can be used to efficiently find a clique of size $n-2t \geq 3t+1$ when the graph contains a clique of size $n-t$.
 - If no such clique is found, the dealer can be safely disqualified.
 - Noninteractive solution II: more sophisticated version of the above; works efficiently when $n>4t$.
 - Interactive solution: dealer helps find a good clique by resolving disputes.
General Protocol, $n>3t$

- Dealer picks a random bivariate polynomial $F(x,y)$ with degree $\leq t$ in each variable and free coefficient s. It sends to each player P_i the polynomials $f_i(x)=F(x,i)$ and $g_i(y)=F(i,y)$.
- Each P_i privately sends to each P_j the common secondary shares $s^i_{ji}=f_i(j)$, $s^i_{ij}=g_i(j)$. P_j compare these values to $s^j_{ji}=g_j(i)$, $s^j_{ij}=f_j(i)$ (respectively) and if they don’t match it broadcasts an inconsistency complaint $\{i,j\}$.
- Dealer responds to each complaint by broadcasting the correct value.
- Players whose original shares contradict the broadcasted values broadcast an accusation against the dealer and halt.
- Dealer must broadcast the polynomials f_i, g_i of all accusing players.
- Players who find new inconsistency accuse the dealer and halt.
- If there are more than t accusations, dealer is disqualified. Otherwise players take their primary shares from the most recent version of f_i.
Reducing $\text{MS}_{\text{Shamir}}$ to $\text{VSS}_{\text{Shamir}}$

- In fact: we reduce $\text{MS}_{\text{Bivariate}}$ to $\text{VSS}_{\text{Bivariate}}$, where “Bivariate” scheme shares s using a bivariate degree-t polynomial
 - For each primary share s_i players hold secondary shares $[s_i]$ defined by a univariate polynomial g_i, where g_i is known to P_i.
- **Observation**: all previous protocols for $\text{VSS}_{\text{Shamir}}$ can be easily modified to implement $\text{VSS}_{\text{Bivariate}}$
 - Instead of recovering its primary share s_i alone, player P_i can recover the polynomials f_i, g_i.

High level MS protocol:

- **Inputs**: Bivariate shares $[a],[b]$ (with secondary shares g_{ai}, g_{bi})
- **Outputs**: Bivariate shares $[c]$ of $c=ab$
- Each P_i computes $c_i=a_ib_i$ and applies $\text{VSS}_{\text{Shamir}}$ to c_i resulting in $[c_i]$
- P_i proves in “zero-knowledge” to the other players that the value it shared satisfies $c_i=a_ib_i$.
 - If proof fails, his shares a_i,b_i are publicly reconstructed from their secondary shares, and $[c_i]=[a_ib_i]$ can be locally computed.
- Players compute $[c]$ as a proper linear combination of $2t+1$ of the $[c_i]$
 - Each $\mu_i c_i$ is reshared using $\text{VSS}_{\text{Bivariate}}$ by applying a linear function to $\mu_i c_i$ and randomness VSSed by P_i.
Proving that $c_i = a_i b_i$ ($n > 4t$):

- **Inputs:** Shamir shares $[u], [v], [w]$, where sharing polynomials g_u, g_v, g_w are known to P_i.
 - Here $u = a_i$, $v = b_i$, $w = c_i$
- **Outputs:** Each P_j accepts if $w = u v$ and rejects otherwise.
- P_i computes $g_{uv} = g_u g_v$ and applies VSS$_{Shamir}$ to each of the $2t+1$ coefficients of g_{uv} except the free coefficient
 - The free coefficient is supposedly shared by $[w]$
 - Players need to verify that the degree-$2t$ polynomial g_{uv} uniquely defined by the VSSed coefficients is indeed equal to $g_u g_v$
- For each j, the value $g_{uv}(j)$ is privately communicated to P_j by having each player send to P_j the appropriate linear combination of the shared coefficients.
- P_j verifies that $g_{uv}(j) = u_j v_j (= g_u(j) g_v(j))$, otherwise it broadcasts a complaint.
- Players accept iff there are at most t complaints.

- **Privacy:** $g_{uv}(j)$ is already known to P_j
- **Completeness:** If P_i is honest and $w = u v$, then no honest player will complain.
- **Soundness:** If there are $\leq t$ complaints then $g_{uv}(j) = g_u(j) g_v(j)$ for $\geq n-2t > 2t$ points j.
 Since $\deg g_{uv} = \deg g_u g_v \leq 2t$, we must have $g_{uv} = g_u g_v$ and hence $w = u v$.
Handling $n > 3t$

- **Idea:** resolve a complaint of P_j by confronting him with P_i.
- **Problem:** u_j, v_j are only known to P_i, P_j.
- **Solution:**
 - Convert the input shares to bivariate shares
 - Similarly to last step in MS protocol
 - In case of complaint by P_j, the values $u_j, v_j, g_{uv}(j)$ are publicly reconstructed.
 - If $u_j v_j \neq g_{uv}(j)$, players reject.
Computational Security
Overview

• **Goal**: Obtain computational security against an active adversary.

• **Hope**: under a reasonable cryptographic assumption, obtain a computationally n-secure protocol for arbitrary functionalities.
 – Impossible in information-theoretic setting.
 – Possible* in computational setting.
 – In fact, assuming one-way functions exist, there is a *general compiler* transforming an n-private protocol into an n-secure one with “similar” efficiency.

\Rightarrow General n-secure computation is possible if passively secure OT exists.
 • Implied by rerandomizable encryption, or trapdoor permutations.
How to Flip a Coin?

• Information theoretic setting
 – Perfect coin-flipping is possible iff $n > 3t$.
 – Assuming broadcast, statistical coin-flipping is possible iff $n > 2t$.
 – Nothing can be done in the 2-party case.

• Idea for (real-life) 2-party coin-flipping:
 – P_1 writes a random bit b and locks the paper in a box.
 – P_2 picks a random bit b'
 – P_1 unlocks box and reveals b
 – Players output $b \oplus b'$
Is the protocol secure?

• Idea for 2-party coin-flipping:
 – \(P_1 \) writes a random bit \(b \) and locks the paper in a box.
 – \(P_2 \) picks a random bit \(b' \)
 – \(P_1 \) unlocks box and reveals \(b \)
 – Players output \(b \oplus b' \)

• Properties of coin-flipping in the ideal model:
 – If both players are honest, they output the same (random) bit
 – The bit output by an honest player is random
 • In particular, corrupted player cannot bias the output of the other player.

• Problem with protocol: what if \(P_1 \) refuses to open box?
 – Suggestion: \(P_2 \) picks a random bit as its output.
 • Problem: Allows \(P_1 \) to get the value it wants with probability 3/4
 – Real-life suggestion: \(P_2 \) picks the output value that would make \(P_1 \) most unhappy.
 • Allows coin-flipping where each player can only bias the coin to one direction.
 • Applicable in many scenarios (e.g., in games, gambling).
 • Problem: not always clear what would make \(P_1 \) unhappy…
 – Convention: \(P_2 \) outputs \(\bot \) (i.e., does not learn the output).
Can the problem be fixed?

• No, problem is inherent.
• High-level argument:
 – Suppose protocol has m rounds, where players alternate in sending messages.
 – In honest execution, at some stage some player should have an advantage of $1/m$ over the other in the probability of guessing the output.
 – An adversary corrupting this player can decide whether to continue the protocol or to abort based on its guess of the output.
• Workarounds:
 – Relax security definition allowing adversary to abort in the ideal model as well.
 – Disperse adversary’s advantage over many rounds.
 – Enforce penalties for aborting (e.g., using bitcoin infrastructure)
 – Timing assumptions:
 • P_1 uses a weak lock that can be opened via brute force within an hour.
 • P_2 must respond with his guess b' within 1 second.
 • If P_1 fails to open box, P_2 can recover the locked value b within an hour and output $b \oplus b'$.
Fairness

• Our default definition for secure computation insists on total fairness: in the ideal model, all parties get their outputs from TP.
• As indicated by coin-flipping example, total fairness cannot always be achieved.
• Motivates the following relaxed security definition: in ideal model, TP first sends outputs to simulator, which then decides whether to continue (letting TP send the actual outputs to uncorrupted parties) or to abort (letting TP send a special symbol ⊥ to uncorrupted parties).
 – Better: simulator can abort only if it corrupts P₁
 • Allows fully secure computation of any asymmetric 2-party functionality: functionality in which only P₁ gets an output.
 – Under abovedefs., every functionality can be computed with computational n-security.
 • Assumes broadcast or public-key infrastructure.
Back to Coin Flipping

• Main tool: **Commitment** scheme
 – Cryptographic analogue of a locked box

• **Def.** A (non-interactive bit-) commitment scheme is an efficiently computable function $\text{Com}(b,r)$ with the following properties:
 – **Privacy:** $C_0(k) \approx_c C_1(k)$, where $C_b(k)$ is the distribution of $\text{Com}(b,r)$ with $r \in \mathbb{R}\{0,1\}^k$.
 – **Binding:** there are no r_0, r_1 such that $\text{Com}(0,r_0) = \text{Com}(1,r_1)$.

• **Features:**
 – Receiver cannot learn committed value without help of sender.
 – An honest sender can efficiently “open” commitment by sending b,r.
 – Even a malicious sender cannot “change its mind” once committed.
Implementing Commitment

• GM encryption is committing
 – Com(b,r) = GM public-key + encryption of b using randomness r
 – Technical issue: what if r fails to produce a valid key+encryption pair?
 • Happens w/neg. probability, so in such case can output b without violating secrecy.

• Commitment from 1-1 OWF
 – A one-way function (OWF) is an efficiently computable f:{0,1}∗→{0,1}∗ that is “hard to invert” in the following average-case sense: for any efficient (nonuniform) inversion algorithm I, the probability that I(1^k,f(r)) returns a preimage of f(r), where r∈R{0,1}^k, is negligible in k.
 – Given a 1-1 (bijective) OWF f, a commitment may be defined as:
 • Com(b,(r_1,r_2))=(f(r_1), r_2, b⊕<r_1,r_2>), where < , > denotes mod-2 inner product.

• Interactive commitment is possible under the minimal assumption that (an arbitrary) one-way function exist.
Coin Flipping Protocol

P_1 P_2

$b \in \mathbb{R}\{0,1\}$

$r \in \mathbb{R}\{0,1\}^k$

$c \leftarrow \text{com}(b,r)$

c

$b' \in \mathbb{R}\{0,1\}$

b', r

Output $b \oplus b'$

Output $b \oplus b'$ if $c = \text{Com}(b,r)$

Output \bot otherwise
Simulating P_2^*

- Call TP and receive a random bit c.
- Repeatedly run the protocol (P_1, P_2^*) until P_1 outputs c.
 - If k attempts fail, output “Fail” and halt.
- Output the view of P_2^* in the last (successful) run.

- **Claim**: Above simulator *statistically* emulates the real process.
 - By the privacy of the commitment scheme, the distribution of c in the real world is statistically close to uniform.
 - The probability that the simulator outputs “Fail” is negligible.
 - Given that the simulator does not output “Fail”, its output is distributed identically to the real view of P_2^* given that P_1 outputs c.

- **Question**: Does the above simulator generalize to flipping many coins in parallel?
Simulating P_1^*

- Call TP and receive a random bit c.
 - At this stage, simulator still can’t tell whether to abort.
- Start running P_1^* and obtain a commitment c^* it would send in Round 1.
- Continue running the protocol from this point in two different ways, using $b'=0$ and $b'=1$. Let c_0,c_1 be the resulting outputs of P_2 (where $c_b \in \{0,1,\perp\}$).
 - If $c_0 = c_1 = \perp$, abort TP and output a random b' as incoming message.
 - If $c_d \neq \perp$ and $c_{1-d} = c'$
 - If $c = c'$, output $1-d$ as incoming message and allow P_2 to receive its output c.
 - Otherwise, abort TP and output d as incoming message.
 - If $c_d \neq c$ and $c_{1-d} = 1-c$, output d as incoming message and allow P_2 to receive its output c.

- **Claim**: Above simulator perfectly emulates the real process.
Zero-Knowledge Proofs

• Let L be an NP language and R a corresponding NP-relation.
• A Zero-Knowledge Proof system for L (using R) is a protocol between Prover P and Verifier V, satisfying the following.
 – **Inputs**: P and V have a common input x, and P holds a potential witness w.
 – **Outputs**: V either accepts or rejects. P has no output.
 – **Completeness**: If (P,V) run on inputs $(x,w) \in R$, then V accepts x.
 • Perhaps except w/neg prob.
 – **Soundness**: If $x \not\in L$ then for any malicious prover P^* and any w, the probability that $P^*(x,w)$ makes V accept x is negligible in $|x|$.
 • By default, P^* can be computationally unbounded. ZK Proofs in which P^* is bounded are referred to as ZK arguments.
 – **Zero-knowledge**: For any efficient malicious verifier V^*, there is an efficient simulator such that for all (x,w) the output of $S(x)$ is computationally indistinguishable from the view of V^* in its interaction with P on inputs (x,w).
 • Perfect and statistical variants
Zero-Knowledge Proofs (contd.)

• Thm. For every NP-relation R there is a zero-knowledge proof system.

• In fact, most natural ZK proofs systems satisfy the stronger requirement of zero-knowledge proofs of knowledge.
 – Intuitively: Verifier is convinced that whenever it accepts x, the malicious prover P^* “knows” some witness w such that $(x,w) \in R$.
 – A bit more formally: There exists an efficient extraction algorithm E and negligible function ε such that whenever P^* makes V accept x with prob. $> \varepsilon(|x|)$, E can use P^* as a subroutine to extract a valid witness w for x.
From Passive Security to Active Security

- GMW compiler, in a nutshell:
 - Use commitment to make each player commit to its input.
 - Use committed coin-flipping to make each player commit to a secret and uniformly chosen random input for the private protocol.
 - Run the private protocol, where for each broadcasted message its sender proves in zero-knowledge that his current message is consistent with his committed input, committed random input, and previous messages.
 - The latter is an NP-statement, which can be efficiently verified given the randomness used for committing the inputs and random inputs.
 - If such proof fails, honest players detect cheating and can abort with output ⊥.

- Some subtle issues remain.
 - For instance
 - How does one make sure that the input committed to by P_2 is not related to the input committed to by P_1? (Malleability)
 - How does the simulator “extract” the inputs it should send to TP?
 - Both of the above issues are addressed by making each player prove it knows the input it committed to using zero-knowledge proofs of knowledge.
What’s left to be done?

• Improve efficiency
 – Many models, many problems
 – Various efficiency measures
 • Communication, rounds, local computation, randomness

• Better composability
 – Universal Composability is provably impossible in standard model (for most functionalities).
 – Goal: find useful relaxations of UC which can be realized.

• Stronger adversaries
 – Better protocols for adaptive/mobile adversaries
 – Better/different solutions to the fairness problem

• Weaker cryptographic assumptions
 – MPC is equivalent to OT
 – Goal: Generalize / Unify assumptions under which OT can be based.

• Obtain lower bounds and negative results.