Vertex Cover

• \(U \subseteq V \) such that for every edge \(e=(u,v) \in E \)
 – \(u \) or \(v \) is in \(U \)

• **Minimum vertex cover (MVC):**
 – Find \(U \) of smallest size
 – **Weighted**: \(G=(V,w,E) \) with weights \(w:V \rightarrow W \),
 Find \(U \) of smallest **weight** \(w(U)=\sum_{v \in U} w(v) \)
Minimum Vertex Cover

• NP-hard

• Approximation algorithms:
 – Find a vertex cover U: $w(U) \leq \alpha w(U_{\text{opt}})$
 – U_{opt} is the minimum vertex cover

• 2-approximation for unweighted:
 endpoints of greedy maximal matching

• Weighted: UGC \rightarrow no polynomial (2-\(\varepsilon\))-approximation
Local Ratio for MVC

• Consider a vertex cover U, with weight $w(U)$

• Instead of going over all nodes in U and buying their weights $w(U) = \sum_{v \in U} w(v)$, consider:

• Illustration
Local Ratio for MVC

• Going over edges e in E, and buying
 $z_e = \min(w(u), w(v))$
 from both endpoints $e=(u,v)$.
 - Remaining weight

• When a node remains with zero weight we bought it entirely so we can take it into U

• When for all edges e in E we bought an endpoint, U is a vertex cover
Local Ratio for MVC

• How much did we pay for our solution?

• Consider edge $e=(u,v)$
 – We pay at most $2z_e$
 • recall $z_e = \min(w(u), w(v))$
 – An optimal OPT solution has to pay z_e
 • Because e has to be covered
Local Ratio for MVC

• We pay at most $2z_e$
• An optimal OPT solution has to pay z_e

• For e, the local ratio between the costs is ≤ 2

• For E, the ratio between the costs is ≤ 2
Local Ratio

• In a sequential implementation, this requires polynomial time

• This is a much more general framework
 – For approximations of many additional problems

• We will see: A distributed local-ratio implementation of a \((2+\varepsilon)\)-approximation for minimum vertex cover
(2+\(\varepsilon\))-approximation

• Going over edges \(e\) in \(E\), and **buying** \(z'_e < \min(w(u), w(v))\) from both endpoints \(e=(u,v)\).

• Still correct, possibly slower
(2+\varepsilon)-approximation

- Going over edges e in E, and buying $z'_e < \min(w(u), w(v))$ from both endpoints $e=(u,v)$.

- When a node v remains with weight $\varepsilon'w(v)$, we take it into U, paying the remaining weight
 - $\varepsilon' = \varepsilon/(2+\varepsilon)$

- When for all edges e in E we bought an endpoint, U is a vertex cover
(2+\(\varepsilon\))-approximation

• How much do we pay?

• Consider edge \(e=(u,v)\)

 – Assign it weight \(z(e)=\min(w(u), w(v))\)

 • Remaining weights

 – **OPT** pays at least \(\sum_{e \in E} z(e)\)

• We pay \(\sum_{v \in U} w(v)\)

• How much is it compared to \(\sum_{e \in E} z(e)\)?
(2+\(\varepsilon\))-approximation

- We buy a node after paying \(\sum_{e: v \in e} z(e)\) even if its remaining weight is not 0, but \(\varepsilon'w(v)\)
- \(w(v) \leq \varepsilon'w(v) + \sum_{e: v \in e} z(e)\)
- \(\sum_{v \in U} w(v) \leq \frac{1}{(1-\varepsilon')} \sum_{v \in U} \sum_{e: v \in e} z(e)\)
 \[\leq \frac{1}{(1-\varepsilon')} 2\sum_{e \in E} z(e)\]
 \[\leq (2+\varepsilon)\text{OPT}\]
Distributed Implementation

• Seems local: can work in parallel on edges that do not share endpoints
• But can create conflicts for edges that share an endpoint
 — Weight cannot become negative

• Illustration

• How do we coordinate this?
Distributed Implementation

[Bar-Yehuda, C., Schwartzman, 2016]

• **High level description:**
 – A node sends a request X to its neighbor
 – The neighbor responds with a budget Y
 • $Y \leq X$
 – Both nodes reduce Y from their weight

• **Invariants:**
 – Weights always remain non-negative
Distributed Implementation

• **Initial weight:** \(w_0(v) \)

• **Divide weight:** The current weight \(w_i(v) \) is split:

 – \(\text{Vault}_i(v) \leftarrow \epsilon' w_0(v) \)

 – \(\text{Bank}_i(v) \leftarrow w_i(v) - \text{Vault}_i(v) \)

• **Vault** is for making requests, **Bank** is for responding
Distributed Implementation

• **Initial weight:** \(w_0(v) \)
 - \(\text{Vault}_i(v) \leftarrow \varepsilon' w_0(v) \)
 - \(\text{Bank}_i(v) \leftarrow w_i(v) - \text{Vault}_i(v) \)

• In iteration \(i \):
 - Node \(v \) sends \(\text{request}_i(v) \leftarrow \text{Vault}_i(v)/d_i(v) \) to each of its neighbors
 - Node \(v \) responds to \(\text{request}_i(u) \) from \(\text{Bank}_i(v) \)
Distributed Implementation

- Node v responds to $\text{request}_i(u)$ from $\text{Bank}_i(v)$:
 - Sorts neighbors $u_1, \ldots, u_{d(v)}$
 - Responds to u_1 with
 \[
 \text{budget}_{i,u_1}(v) \leftarrow \min(\text{request}_i(u_1), \text{Bank}_i(v))
 \]
 and updates $\text{Bank}_i(v) \leftarrow \text{Bank}_i(v) - \text{budget}_{i,u_1}(v)$
 - Responds to u_2 with
 \[
 \text{budget}_{i,u_2}(v) \leftarrow \min(\text{request}_i(u_2), \text{Bank}_i(v))
 \]
 and updates $\text{Bank}_i(v)$
 - Etc.
Distributed Implementation

• **Illustration**

• Node v receives $\text{budget}_{i,v}(u_j)$ from each neighbor u_j and updates

$$\text{Vault}_i(v) \leftarrow \text{Vault}_i(v) - \sum_{j=1}^{d_i(v)} \text{budget}_{i,v}(u_j)$$

• Node v updates:

 – **Weight:** $w_{i+1}(v) \leftarrow \text{Vault}_i(v) + \text{Bank}_i(v)$

 – **Neighbors:** $d_{i+1}(v) \leftarrow d_i(v) - |\{j: \text{budget}_{i,v}(u_j) < \text{request}_i(v)\}|$
Distributed Implementation

- If $w_{i+1}(v) \leq \varepsilon'w_0(v)$ then v enters the cover U
 - Sends messages to neighbors
 - Outputs InCover

- If $d_{i+1}(v)=0$ then v does not enter the cover U
 - Outputs NotInCover

- Otherwise, v continues to iteration $i+1$:
 - $\text{Vault}_{i+1}(v) \leftarrow \varepsilon'w_0(v)$
 - $\text{Bank}_{i+1}(v) \leftarrow w_{i+1}(v) - \text{Vault}_{i+1}(v)$
• **Claim 1:** If \(\text{budget}_{i,v}(u_j) < \text{request}_i(v) \) then \(u_j \) terminates at the end of the iteration.

• **Proof:** If \(\text{budget}_{i,v}(u_j) < \text{request}_i(v) \) then
 \[\text{Bank}_i(u_j) = 0 \]
 and hence
 \[w_{i+1}(u_j) \leq \text{Vault}_i(u_j) \leq \varepsilon'w_0(u_j) \]
 so \(u_j \) outputs \text{InCover}
Analysis

• **Claim 2:** Either $d_{i+1}(v) \leq d_i(v)/2$, or $w_{i+1}(v) \leq w_i(v) - \varepsilon'w_0(v)/2$

• **Proof:** If $d_{i+1}(v) > d_i(v)/2$ then, by Claim 1, for at least $d_i(v)/2$ neighbors it holds that $\text{budget}_{i,v}(u_j) = \text{request}_i(v)$.

• Since $\text{request}_i(v) = \varepsilon'w_0(v)/d_i(v)$, this means that $w_{i+1}(v) \leq w_i(v) - \varepsilon'w_0(v)/2$.

Keren Censor-Hillel, Spring 2018
Analysis

• **Theorem 1**: The algorithm gives a \((2+\varepsilon)\)-approximation for minimum vertex cover in \(O(2/\varepsilon'+\log\Delta)\) rounds

• **Proof**: Applying Claim 2 for node \(v\) gives:
 • There can be at most \(O(\log\Delta)\) rounds for which \(d_{i+1}(v) \leq d_i(v)/2\) happens, and
 • There can be at most \(O(2/\varepsilon')\) rounds for which \(w_{i+1}(v) \leq w_i(v)-\varepsilon'w_0(v)/2\) happens.
Improved analysis

- **Claim 2’**: Either $d_{i+1}(v) \leq d_i(v)/K$, or $w_{i+1}(v) \leq w_i(v) - \varepsilon' w_0(v)/K$

- **Proof**: If $d_{i+1}(v) > d_i(v)/K$ then, by Claim 1, for at least $d_i(v)/K$ neighbors it holds that $\text{budget}_{i,v}(u_j) = \text{request}_i(v)$.

- Since $\text{request}_i(v) = \varepsilon' w_0(v)/d_i(v)$, this means that $w_{i+1}(v) \leq w_i(v) - \varepsilon' w_0(v)/K$.

Keren Censor-Hillel, Spring 2018
Analysis

• **Theorem 1’**: The algorithm gives a \((2+\varepsilon)\)-approximation for minimum vertex cover in \(O(\log\Delta/\log\log\Delta)\) rounds.

• **Proof**: Applying Claim 2’ for node \(v\) gives:
- That there can be at most \(O(\log K\Delta)\) rounds for which \(d_{i+1}(v) \leq d_i(v)/K\) happens, and
- There can be at most \(O(K/\varepsilon)\) rounds for which \(w_{i+1}(v) \leq w_i(v) - \varepsilon'w_0(v)/K\) happens.

• To minimize \(O(K/\varepsilon'+\log K\Delta)\) we choose \(K = \log\Delta/\log\log\Delta\).
CONGEST?

• Even if original weights are $O(\log n)$-bit values in $W=\{1,\ldots,\text{poly}(n)\}$, fractional values may not be so.
CONGEST?

• Instead of sending requests:
 – Send $w_0(v)$ and $d_i(v)$ to all neighbors
 – Nodes locally compute requests $\varepsilon'w_0(v)/d_i(v)$
CONGEST?

• Instead of sending budgets:
 – Vault is modified to $\varepsilon'w_0(v)/2$
 – If $\text{budget}_{i,v}(u_j) = \text{request}_i(v)$ then u_j sends “accept”
 – Otherwise, respond with maximal integer t for which

 $$t\varepsilon'w_0(v)/2 \leq \text{budget}_{i,u}(v).$$

 – The amount $t\varepsilon'w_0(v)/2$ is locally computed by u.
CONGEST?

• Instead of sending budgets:
 – Vault is modified to $\varepsilon'w_0(v)/2$
 – The remainder of weight in vertex v is another value of at most $\varepsilon'w_0(v)/2$ on top of the at most $\varepsilon'w_0(v)/2$ value which might remain in $\text{Vault}_i(v)$.
 – This sums to no more than $\varepsilon'w_0(v)/2$.
 – So, indeed v returns \texttt{InCover}.
Lower bound

[C., Khoury, Paz, 2017]

- Exact MVC in the CONGEST model takes $\Omega(n^2)$
- Size of MVC $= 4(k-1)+4\log k \iff$ inputs not disjoint

Input length: k^2

$k = \Theta(n)$

cut: $\Theta(\log n)$

Rounds:

$\Omega(k^2/\log^2 n) = \Omega(n^2/\log^2 n)$