236610
Distributed Graph Algorithms

Spring 2018
Keren Censor-Hillel
Lower Bound for Set Disjointness

• **Theorem**: The communication complexity of *set disjointness* is $k+1$

• **Proof**:
 • Any protocol π that solves set disjointness has $CC(\pi)=k+1$:
 • Will be proven by **Claims 1** and **2** next.
Rectangles

• Given two subsets X, Y of 2^k, the set $X \times Y$ is called a rectangle

• Illustration

• Given a function $f : 2^k \times 2^k \rightarrow \{0, 1\}$, a rectangle $X \times Y$ is f-monochromatic if $f(x, y) = f(x', y')$ for all $x, x' \in X$ and $y, y' \in Y$.
Monochromatic Rectangles

• **Claim 1**: A protocol π with $CC(\pi) = b$ divides the input domain $2^k \times 2^k$ to at most 2^b disjoint monochromatic rectangles.

• **Proof**: by induction on the depth i in the protocol tree, with the property of corresponding to disjoint rectangles.

• **Base case $i=0$**: the root corresponds to the set of all inputs.
Monochromatic Rectangles

• **Induction hypothesis**: after \(i-1 \) bits of the protocol \(\pi \), the input domain \(2^k \times 2^k \) is divided to **disjoint rectangles**
Monochromatic Rectangles

• **Induction step**: Consider a string of depth i, and let XxY be the corresponding rectangle.

• Assume that Bob sends the next bit.
Monochromatic Rectangles

• Assume that Bob sends the next bit.
 – Y' in Y: the inputs for which the next bit is 0
 – Y'' in Y: the inputs for which the next bit is 1

• XxY' and XxY'' are two disjoint rectangles corresponding to s

• The leaves are disjoint rectangles, and they must be monochromatic. For $CC(\pi)=b$, there are at most 2^b leaves.
Rectangles in Set Disjointness

• **Claim 2**: A protocol π that solves Set Disjointness divides the input domain $2^k \times 2^k$ to at least $2^k + 1$ disjoint monochromatic rectangles

• **Proof**: Consider the 2^k pairs of the form (u, \bar{u}). The output for all of them is 0.
Rectangles in Set Disjointness

• **Claim 2**: A protocol π that solves Set Disjointness divides the input domain $2^k \times 2^k$ to at least $2^k + 1$ disjoint monochromatic rectangles

• **Proof**: No two such pairs (u, \bar{u}) and (u', \bar{u}') can be in the same monochromatic rectangle because then the output for (u, \bar{u}') and (u', \bar{u}) is also 0, but it has to be 1 for one of them.
Rectangles in Set Disjointness

• **Claim 2**: A protocol \(\pi \) that solves Set Disjointness divides the input domain \(2^k \times 2^k \) to at least \(2^k + 1 \) disjoint monochromatic rectangles.

• **Proof**: This gives \(2^k \) disjoint monochromatic rectangles.

• There is at least one more additional rectangle for outputs 1.
Lower Bound for Set Disjointness

• **Theorem**: The communication complexity of *set disjointness* is $k+1$

Any protocol π that solves set disjointness has $\text{CC}(\pi)=k+1$:

• **Proof**:
 • By **Claims 1** and **2**, π needs at least $\log(2^k+1)$ bits, which is at least $k+1$ bits.
Local/Global Problems

• We need $\Omega(D)$ rounds for BFS, MST

• Do we need $\Omega(D)$ rounds for all interesting problems?

• No:
 – BFS, MST are global problems
 – some problems are local problems
c-Coloring

• A function \(\varphi: V \rightarrow \{1, \ldots, c\} \) is a c-coloring if for every \(u, v \in V \) such that \(\{u, v\} \in E \) it holds that \(\varphi(u) \neq \varphi(v) \)

• If \(G \) has a c-coloring then \(G \) is c-colorable
Chromatic Number

• The **chromatic number** $\chi(G)$ of G is the smallest c for which G is c-colorable
 – Finding $\chi(G)$ or a $\chi(G)$-coloring is NP-hard

• Every graph has a $(\Delta+1)$-coloring
 – Δ is the maximal degree in the graph

• **Proof**: The greedy sequential algorithm
Distributed Coloring

• LOCAL model

• Each node v outputs a color $\varphi(v)$ such that φ is a c-coloring

• Greedy can be simulated in n rounds in LOCAL
Color Reduction

- Given a \(c \)-coloring \(\varphi \), obtain a \((\Delta+1) \)-coloring

1. for \(i = c, \ldots, \Delta+2 \) do
2. if \(\varphi(v) = i \) then
3. \(\varphi(v) \leftarrow \min \{ x \mid \varphi(u) \neq x \text{ for all } u \in N(v) \} \)
4. send \(\varphi(v) \) to all neighbors
5. return \(\varphi(v) \)
Color Reduction

• **Correctness:**
 - For each v, $\varphi(v) \leq \Delta + 1$ because at most Δ colors are used by neighbors.

• The coloring is valid, by induction on the round number (starts valid and remains valid at the end of the round).

• **Round complexity:** $c-\Delta-1$
 - This is $O(n-\Delta)$ if we start with IDs as colors
Recursive \((\Delta+1)\)-coloring

Recurse(\(x\)):
1. if \(|x| = \log n\) then
2. \(\varphi(v) \leftarrow 1\)
3. return \(\varphi(v)\)
4. \(b \leftarrow \text{ID}_v[\log n - |x|]\)
5. \(\varphi(v) \leftarrow \text{Recurse}(bx)\)
6. if \(b = 1\)
7. for \(i = 1, \ldots, \Delta+1\)
8. if \(\varphi(v) = i\)
9. \(\varphi(v) \leftarrow \min\{x \mid \varphi(u) \neq x \text{ for all } u \in N(v)\}\)
10. send \(\varphi(v)\) to all neighbors
11. return \(\varphi(v)\)
Recursive \((\Delta+1)\)-coloring

- **Illustration**

- **Correctness**: Gives a \((\Delta+1)\)-coloring when executed with \(x=\varepsilon\). Let \(U_x = \{v | \text{Id}_v = yx\}\). By induction, at the end of each recursion level, \(U_x\) has a \((\Delta+1)\)-coloring.

- **Base case**: When \(|x| = \log n\), each node \(v\) has \(\varphi(v) = 1\), and \(U_x = \{v\}\).

- **Induction hypothesis**: Assume the claim holds for \(|x| = i\), that is, for all \(0x'\) and \(1x'\) such that \(|x'| = i-1\).
Recursive $(\Delta+1)$-coloring

- **Induction step**: By the induction hypothesis, all nodes in $U_{0x'}$ have a valid coloring. The nodes in $U_{1x'}$ adjust their colors accordingly, and since this is done according to their colors, no two neighbors in $U_{1x'}$ adjust at the same round. This gives a valid $(\Delta+1)$-coloring for $U_{x'}$.
Recursive $(\Delta+1)$-coloring

- **Correctness**: Gives a $(\Delta+1)$-coloring when executed with $x=\varepsilon$. Let $U_x = \{v | \text{Id}_v = yx\}$. By induction, at the end of each recursion level, U_x has a $(\Delta+1)$-coloring.

- **Round Complexity**: $O(\Delta \log n)$ rounds, since there are $\log n$ iterations of $O(\Delta)$ rounds each.
Distributed $(\Delta+1)$-coloring

- Distributed algorithms for $(\Delta+1)$-coloring:
 - Greedy: $O(n)$ rounds
 - Color reduction: $O(n-\Delta)$ rounds
 - Recursive: $O(\Delta \log n)$ rounds

- Best known complexities are:
 - Deterministic: $\tilde{O}(\sqrt{\Delta} + \log^* n)$ rounds
 - Randomized: $O(\sqrt{\log \Delta} + 2^{O(\sqrt{\log \log n})})$ rounds

- Lower bound: $\Omega(\log^* n)$