236610
Distributed Graph Algorithms

Spring 2018
Keren Censor-Hillel
Spanners

• Given $G=(V,E)$ and E_S in E, a subgraph $S=(V,E_S)$ is called a **k-spanner** of G if:

 – For every u,v in V:

 $$\text{dist}_S(u,v) \leq k \cdot \text{dist}_G(u,v)$$

 – It is enough that the condition holds for every u,v that are neighbors in G.

• k is called the **stretch** of the spanner
Spanners

• Illustration

• Every graph is a 1-spanner of itself

• Why spanners?
 – Need a sparse subgraph
 – But sparsity increases distances
 • a tree may have a linear stretch
 – We care about the trade-off
Spanners

2-spanners:
• Clique?
• How sparse can it be in general?
 – $\Theta(n^2)$ edges in a complete bipartite graph
A (2k-1)-Spanner

• **Theorem:**
 Every graph has a \((2k-1)\)-spanner with \(O(n^{1+1/k})\) edges
A $(2k-1)$-Spanner

- **Theorem**: Every graph has a $(2k-1)$-spanner with $O(n^{1+1/k})$ edges

- **Proof**: By a greedy algorithm:
 - Initially, $S =$ empty
 - For every $e = \{u,v\}$ in E:
 - If $d_S(u,v) > (2k-1) \cdot d_G(u,v)$ then add e to S
 - Return S
A (2k-1)-Spanner

- **Theorem:** Every graph has a **(2k-1)**-spanner with \(O(n^{1+1/k})\) edges

- **Proof:**
 - If \(d_S(u,v) > (2k-1)d_G(u,v)\) then add \(e\) to \(S\)

- **Stretch:** At most **2k-1**, otherwise \(e\) would have been added
A (2k-1)-Spanner

• **Theorem:**
 Every graph has a (2k-1)-spanner with $O(n^{1+1/k})$ edges

• **Proof:**
 – If $d_S(u,v) > (2k-1) d_G(u,v)$ then add e to S

• **Edges:**

• **Claim 1:** S has girth $\geq 2k+1$.

Keren Censor-Hillel, Spring 2018
A (2k-1)-Spanner

- **Theorem:**
 Every graph has a (2k-1)-spanner with $O(n^{1+1/k})$ edges.

- **Proof:**
 - If $d_S(u,v) > (2k-1)d_G(u,v)$ then add e to S

- **Edges:**

- **Claim 1: S has girth $\geq 2k+1$.**
 - If there was a cycle of length $2k$, consider last added edge.
A (2k-1)-Spanner

• **Theorem:**
 Every graph has a (2k-1)-spanner with $O(n^{1+1/k})$ edges

• **Proof:**
 – If $d_S(u,v) > (2k-1) d_G(u,v)$ then add e to S

• **Edges:**

• **Claim 1:** S has girth $\geq 2k+1$.
 – If there was a cycle of length $2k$, consider last added edge

• **Claim 2:** Any graph with girth $\geq 2k+1$ has $O(n^{1+1/k})$ edges.
A (2k-1)-Spanner

- **Claim 2:** Any graph with **girth** \(\geq 2k + 1 \) has \(O(n^{1+1/k}) \) edges.

- **Proof:** Suppose \(G \) with \(g \geq 2k + 1 \) and \(10n^{1+1/k} \) edges.

 \(G' \): Loop and remove \(v \) with \(d(v) < 2n^{1/k} \).
 - \(g' \geq 2k+1 \) because subgraph of \(G \).
 - \(G' \) is not empty because removed at most \(2n^{1+1/k} \) edges.
 - For all \(u \) in \(G' \): \(d(u) \geq 2n^{1/k} \)

 \(\rightarrow \) BFS from \(u \) of depth \(2k \) has at least \(\sim(2n^{1/k})^k > n \) nodes
Girth conjecture (Erdös)

• **Conjecture:**
 There is a graph with girth $\geq 2k+2$ and $\Omega(n^{1+1/k})$ edges.

• Known for small values of k.

• If true, implies that the trade-off is optimal:
 – Remove any edge \Rightarrow stretch at least $2k+1$
 – \Rightarrow any $(2k-1)$-spanner = the entire graph
A Distributed (2k-1)-Spanner

• **Theorem**: There is a distributed algorithm that constructs a \((2k-1)\)-spanner with \(O(kn^{1+1/k})\) edges in \(O(k^2)\) rounds
Notation

• **Cluster**: A connected set of nodes \(C \) in \(V \)

• **Clustering**: A set of clusters \(P = \{C_1, \ldots, C_p\} \)

• Given a clustering \(P \), a node \(v \) is **covered** in \(P \) if there is a cluster \(C \) in \(P \) such that \(v \) is in \(C \).
 – We denote this cluster as \(C(v) \)

• A node \(v \) and a cluster \(C \) are called **neighbors** if there is a node \(u \) in \(C \) such that \(v \) and \(u \) are neighbors
Template

- $S =$ empty (spanner edges)
- Initially $P_0 = \{ \{ v \} \mid v \text{ in } V \}$

- For k-1 iterations:

- Given P_{i-1}, each C in P_{i-1} is **selected** with independent probability $\frac{1}{n^{1/k}}$
 - Denote P'_i the set of selected clusters
Template

• For every node v that is uncovered in P'_i

 – **Rule 1**: If v has neighbors in P'_i then v joins one such neighbor C and an edge from v to C is added to S

 – **Rule 2**: Otherwise, for every C in P_{i-1} that is a neighbor of v, an edge from v to C is added to S
Template

• The new clustering is P_i

 – If Rule 1 applied to v then v is covered in P_i

 – Otherwise, if Rule 2 applied to v then v is uncovered in P_i
Illustration

\[C \text{ in } P_{i-1} \text{ selected to } P'_i \]

\[C', C'' \text{ in } P_{i-1} \text{ not selected to } P'_i \]
Illustration

\(C \) in \(P_{i-1} \) selected to \(P'_i \)

\(C', C'' \) in \(P_{i-1} \) not selected to \(P'_i \)
Illustration

\(C \) in \(P_{i-1} \) selected to \(P'_i \)

\(C', C'' \) in \(P_{i-1} \) not selected to \(P'_i \)
Template

• Iteration k:

• P_k is empty

 – Given P_{k-1}, each C in P_{k-1} is selected with probability 0

• **Rules 1 and 2** remain the same
Analysis – Number of Edges

• **Claim 1**: The expected number of edges in S is $O(kn^{1+1/k})$

• **Proof**: We will see that the expected number of edges that are added to S in each iteration is $O(n^{1+1/k})$

• Edges that are added according to **Rule 1** are at most one for each node, so their total number is at most n.
Analysis – Number of Edges

• How many edges are added to S according to Rule 2?

• Let t be the number of clusters in P_{i-1} that are neighbors of v.

• If $t \leq n^{1/k}$ then by Rule 2 we add at most $n^{1/k}$ edges to S
Analysis – Number of Edges

• Otherwise, denote $t = qn^{1/k}$, where $q > 1$.

• The probability for a cluster C in P_{i-1} to be selected into P'_i is $1/n^{1/k}$

• So, the probability that no cluster in P_{i-1} that is a neighbor of v is selected is at most $(1 - 1/n^{1/k})^t$.
Analysis – Number of Edges

• In this case we add \(t \) edges to \(S \) according to Rule 2. This gives that the expected number of edges that are added according to Rule 2 is at most:

\[
t(1 - \frac{1}{n^{1/k}})^t = qn^{1/k}((1 - \frac{1}{n^{1/k}})^n^{1/k})^q
\]

\[
= n^{1/k} q(1/e)^q
\]

This is < 1 for \(q > 1 \)

\[
= O(n^{1/k})
\]
Analysis – Number of Edges

• In iteration k:

• The probability of C to survive all iterations is $(1/n^{1/k})^{k-1}$

• So for a node v, the number of edges added to S in iteration k is at most n times the above, which is $n^{1/k}$.
Analysis - Stretch

• **Claim 2**: The stretch of S is at most $2k-1$

• **Proof**: Consider neighbors v and u. We will see that $\text{dist}_S(u,v) \leq 2k-1$.

• Let j be the minimal index such that either u or v is uncovered in P_j (possibly both).
 – There must be such j because in P_0 all nodes are covered and in P_k none are covered.
Analysis - Stretch

• Assume w.l.o.g. that u is uncovered. This means that Rule 2 was applied to u.

• Since j is minimal, both u and v are covered in P_{j-1}.

• Since u and v are neighbors, there is an edge from u to $C(v)$ that is added to S according to Rule 2.
 – This may be an edge to some other w in $C(v)$.
Illustration

$C(v)$ in P_{j-1}

Keren Censor-Hillel, Spring 2018
Analysis - Stretch

• This gives that:
\[
\text{dist}_S(u,v) \leq \text{dist}_S(u,w) + \text{dist}_S(w,v) \\
\leq 1 + 2(j-1) \\
\leq 2j-1 \\
\leq 2k-1
\]
Analysis - Stretch

• Why $\text{dist}_s(w,v) \leq 2(j-1)$ for v and w in the same C in P_{j-1}?

• By induction on j, the radius of every C in P_j is at most j. That is, there is a z in C such that for every y in C we have $\text{dist}_s(z,y) \leq j$
Distributed Implementation

• Every component C, which was initially $\{z\}$, is maintained by its center z.
 – z decides whether C is selected in iteration i
 – Forwards this decision to all nodes of C

• Nodes of C tell their neighbors whether C is selected

• Every uncovered node v knows whether to apply Rule 1 or Rule 2, and chooses edges accordingly
Distributed Implementation

• **Claim 3**: The distributed implementation completes in $O(k^2)$ rounds.

• **Proof**: In iteration i, it takes i rounds for all nodes of a cluster C to know whether it is selected or not (because i is the radius of C).

• Another round is needed for telling the neighbors of C, and another round for uncovered nodes to respond.
Distributed Implementation

• This gives $O(i)$ rounds for iteration i
• The total number of rounds is:

$$\sum_{i=1}^{k} O(i) \leq O(k^2)$$

Theorem: There is a distributed algorithm that constructs a $(2k-1)$-spanner with $O(kn^{1+1/k})$ edges in $O(k^2)$ rounds
Additional Spanners

• We saw today a **multiplicative spanner**

• There are **(α, β)-spanners**, in which for every u and v in V:
 \[\text{dist}_S(u,v) \leq \alpha \text{dist}_G(u,v) + \beta \]
 – It is no longer enough that the condition holds for neighbors in G

• There are **purely additive c-spanners**, in which for every u and v in V:
 \[\text{dist}_S(u,v) \leq \text{dist}_G(u,v) + c \]