236610
Distributed Graph Algorithms

Spring 2018
Keren Censor-Hillel
The course

• **Class:** Wednesdays 10:30-12:30, Taub 4
• **Office hours:** Wednesdays 9:30-10:30, Taub 516
• **TA:** Seri Khoury

• **Prerequisites:**
 Data Structures, Introduction to Algorithms, Probability Theory

• **Grade structure:** 3 home assignments, final project

• **Book:**
 Distributed Computing: A Locality-Sensitive Approach
 David Peleg, SIAM 2000
What is distributed computing?

• Multiple *computing components* which *communicate* in order to perform some computation
 – Communication networks
 – Multicore computers

• Characterized by the absence of central control
Computing models

• First task: **model** the system

• Describe the computation as it happens in reality, but avoid details that are specific
 – Finite state machines
 – Turing machines
Distributed graph algorithms

• n computing components
• **Communication**: sending *messages* along links

• **Model:**
 – Communication links described as a graph G
 – The topology of G is *unknown* to the nodes
 – Typical knowledge of a node v:
 • A polynomial bound on the number of nodes n
 • The identities of its neighbors $N(v)$
Assumptions

- **Message length**: unbounded/bounded
- **Timing**: synchronous/asynchronous
- **Knowledge**:
 - The number of nodes n
 - The maximal degree in the graph Δ
Complexity measures

• Basic underlying assumption:
 Communication is more expensive than local computation

• We typically measure communication
 – Number of communication rounds (synch)
 – Number of messages sent
 – Number of bits sent
Uncertainty

• Various additional aspects of distributed computing to be discussed depending on time
 – Faulty nodes or links
 – Dynamic changes to the network topology
 – Noise

• These characterize real systems and show the limited control we have over the computation
Model

- **Synchronous** system. **Complexity**: number of rounds
- In each round:
 - Node v can send messages to every node in $N(v)$
 - Motivation: sending an ID in a single message

 node v can send messages of $O(\log n)$ bits to every node in $N(v)$

- LOCAL

- CONGEST
A BFS tree

• Breadth-First Search Tree
 – Input: a root r
 – Output: a tree of shortest paths to r

• Distributed setting:
 – Input to node v: indication whether v is r
 – Output: $d(v,r)$ and parent in the BFS tree
 • No knowledge of the entire tree is required
A BFS algorithm

Variables for node v:

- **state** ∈ {activated, deactivated}, initially deactivated, except for v = r
- **parent**, initially v
- **dist**, initially ∞, except for v = r, initially 0

1 for $i=1, \ldots$ do
2
3 if **state** = activated then
4 send i to all neighbors
5 **state** ← deactivated
6 else
7 if receive message for first time (from node w) then
8 **parent** ← w
9 **dist** ← i
10 **state** ← activated
Correctness

• **Claim 1:** There is a BFS tree T rooted at r, such that after the algorithm runs, for each node v:
 – $\text{parent}(v)$ is set to the parent of v in T
 – $\text{dist}(v)$ is set to $d(v,r)$

• **Observation:** a node gets activated at most once
 – Because it becomes activated only when the condition in line 6 holds (the first message is received), which can happen only once.
Claim 1: parent(v) is set to the parent of v in T
dist(v) is set to d(v,r)

Proof:
• We prove the following by induction over the rounds. We show that each node that is activated in round i produces the correct distance and parent in round i – 1, and that all nodes in distance i – 1 are indeed activated in round i.
Claim 1: parent(v) is set to the parent of v in T
dist(v) is set to d(v,r)

Proof:

• The base case: this is for round 1, where only r is activated. Its parent does not change and it outputs distance 0 before the execution begins. Its message reaches all nodes within distance 1 and only them, and so they become activated for the next round.
Claim 1: \(\text{parent}(v) \) is set to the parent of \(v \) in \(T \)
\(\text{dist}(v) \) is set to \(d(v,r) \)

Proof:

• Induction hypothesis: Assume that every node in distance \(i - 1 \) from \(r \) is activated in round \(i \), and that for every node that is activated in round \(i \), its distance from \(r \) is \(i - 1 \) and its parent points to a neighbor in distance \(i - 2 \).
Claim 1: parent(v) is set to the parent of v in T
dist(v) is set to d(v,r)

Proof:
• Induction step: Let v be a node in distance i, then v is activated in round i + 1 because it has a neighbor w within distance i – 1. By the induction hypothesis w is activated in round i and so v receives its message and becomes activated for round i + 1.
Claim 1: parent(v) is set to the parent of v in T
dist(v) is set to d(v,r)

Proof:
• Further, it means that v updates its parent to some node within distance i − 1, and outputs distance i in the previous round.
• It remains to show that the other direction also holds, that is, if v is activated in round i + 1 then indeed its distance is i. This is because if it is activated then it is because it receives a message from some w in round i, and by the induction hypothesis the distance of w is i − 1.
Complexity

• **Claim 2**: The number of rounds is $O(D)$

• **Notation**: D is the diameter of the graph

• **Proof**: By Claim 1, a node in distance i from r completes after i rounds, and hence the number of rounds is the depth of T, which is $O(D)$.
Lower bound

• **Claim 3**: Every synchronous BFS algorithm requires $\Omega(D)$ rounds.

• Intuitively, this is because a node within distance D from the root r can find it out only after D rounds.