Linear Codes

For a prime \(p \), \(GF(p) \) (Galois field of size \(p \)) denotes the integer ring modulo \(p \) which is well-known to be a field.

Remark 1. In this class we will only deal with fields of the form \(GF(p) \), where \(p \) is a prime number.

Let \(F \) be a field of size \(p \), where \(p \) is a prime number. An \((n, M, d)\) code \(C \) over a field \(F \) is called \textit{linear} if for all \(c_1, c_2 \in C \) and \(a_1, a_2 \in F \), it holds that \(a_1c_1 + a_2c_2 \in C \). That is \(C \) is a linear sub-space of \(F^n \) over \(F \).

The \textit{dimension} of a linear \((n, M, d)\) code \(C \) over \(F \) is the dimension of \(C \) as a linear sub-space of \(F^n \) over \(F \). Linear codes will be denoted by \([n, k, d]\), where \(k \) denotes the dimension. The difference \(n - k \) is called the \textit{redundancy} of the code and will be denoted by \(r \).

Every basis of a linear \([n, k, d]\) code \(C \) over \(F \) contains \(k \) codewords, and all the linear combinations of these \(k \) codewords generate the code \(C \). Therefore \(M = |C| = |F|^k \) and the code rate is \(R = \frac{\log_{|F|} M}{n} = k/n \).

Generator Matrix

A \textit{generator matrix} of a linear \([n, k, d]\) code over \(F \) is a \(k \times n \) matrix whose rows form a basis of the code. The generator matrix is denoted by \(G \), and usually a code can have more than one generator matrix.

Example 1.

The \((5, 2, 5)\) code \(C_{5}^{rep} = \{00000, 11111\} \) is a binary linear \([5, 1, 5]\) code which is spanned by the vector \((1, 1, 1, 1, 1)\). The \textit{generator matrix} of this code is \(G = (1 \ 1 \ 1 \ 1 \ 1) \).
The $(3, 4, 2)$ binary parity code $C_{3}^{\text{par}} = \{000, 011, 101, 110\}$ is a binary $[3, 2, 3]$ code. It is spanned by the vectors $(0, 1, 1)$ and $(1, 0, 1)$ so the matrix

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

is a generator matrix of C_{3}^{par}. Note that also the matrix

$$G = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

is a generator matrix of C_{3}^{par}.

Theorem 1. Let C be a linear $[n, k, d]$ code over F. Then

$$d = \min_{c \in C, c \neq 0} \{w_H(c)\}.$$

Proof. The proof appears in Proposition 2.1. Given in class.

An encoder to a binary linear $[n, k, d]$ code C with a generator matrix G is a mapping $E_C : \{0, 1\}^k \to C$ which is defined as follows: For every $u \in \{0, 1\}^k$, $E_C(u) = u \cdot G$.

Since the rank of G is k, it is possible to apply elementary operations to the rows and obtain a $k \times n$ matrix that contains as a sub-matrix a $k \times k$ identity matrix. In case this generator matrix will have the form $(I_k | A)$, where I_k is the $k \times k$ identity matrix and A is a $k \times (n - k)$ matrix, then it will be called a **systematic** generator matrix.

If the code has a systematic generator matrix $G = (I_k | A)$ which is used for the encoder $E_C : \{0, 1\}^k \to C$, then we get for all $u \in \{0, 1\}^k$,

$$E_C(u) = u \cdot G = u \cdot (I_k | A) = (u, u \cdot A).$$

Parity-Check Matrix

A **parity-check matrix** of a linear $[n, k, d]$ code C over F is an $r \times n$ matrix H over F such that for every $c \in F^n$

$$c \in C \iff H \cdot c^T = 0.$$

Hence, the code C is the right kernel of H, which is denoted by $\ker(H)$. Hence,

$$\text{rank}(H) = n - \dim \ker(H) = n - k.$$

If H is of full rank, then $r = n - k$.

Let G be a generator matrix of C. The rows of G span $\ker(H)$ and in particular,

$$H \cdot G^T = 0 \implies G \cdot H^T = 0.$$
Furthermore,
\[\dim \ker(G) = n - \text{rank}(G) = n - k, \]
so the rows of \(H \) span \(\ker(G) \), and a parity-check matrix of a linear code can be computed by finding a basis of the kernel of a generator matrix of the code.

In the special case where \(G \) is a systematic matrix of the form \(G = (I_k|A) \), then the matrix \(H = (-A^T|I_{n-k}) \) is a parity-check matrix of the code.

Theorem 2. Let \(H \) be a parity-check matrix of a non-trivial linear code \(C \) (i.e. \(C \neq \{0\} \)). The minimum distance of the code \(C \) is the largest integer \(d \) such that every set of \(d - 1 \) columns in \(H \) is linearly independent.

Proof. The proof appears in theorem 2.2. Given in class.

Example 2.

1. A parity-check matrix of the \([5, 1, 5]\) code \(C_5^{\text{rep}} \) is

\[
H = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

This matrix is constructed using the property that for a systematic matrix \(G = (I|A) \), the matrix \(H = (-A^T|I) \) is a parity-check matrix of the code.

2. A parity check matrix of the \([3, 2, 2]\) binary parity code \(C_3^{\text{par}} \) is

\[
H = (1 \ 1 \ 1)
\]

which is derived from the systematic generator matrix of the code.

\[
G = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
\end{pmatrix}
\]

Example 3. The linear \([7, 4, 3]\) binary Hamming code is defined by the parity check matrix

\[
H = \begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{pmatrix}
\]

A respective generator matrix is given by

\[
G = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{pmatrix}
\]
It is possible to verify that $H \cdot G^T = 0$. The minimum distance of the code is 3, which can be verified using Theorem 2.

For any integer $m > 1$, the $[2^m-1, 2^m-1-m, 3]$ binary Hamming code is defined by an $m \times (2^m-1)$ parity check matrix whose columns range over all the nonzero vectors of $\{0, 1\}^m$. According to Theorem 2, it also results that the minimum distance of the code is 3.

Decoding of Linear Codes

The nearest-codeword decoder of a code C returns for every word $y \in F^n$ the closest codeword $c \in C$ in Hamming distance. That is, for a word $y \in F^n$ the decoder returns a codeword $c \in C$ that minimizes the value $d_H(y, c)$. This is equivalent to finding a word $e \in F^n$ of minimum Hamming weight such that $y - e \in C$.

Assume that H is an $(n-k) \times n$ parity-check matrix of C (i.e., the rows of H are linearly independent). For a word $y \in F^n$, we define its syndrome to be the vector $s \in F^n$ by

$$s = H \cdot y^T.$$

For example, if y is a codeword in C, then its syndrome is the zero vector 0, since $H \cdot y^T = 0$ when $y \in C$. Furthermore, for every two words $y_1, y_2 \in F^n$,

$$y_1 - y_2 \in C \iff H \cdot y_1^T = H \cdot y_2^T.$$

A set of words y which all the have same syndrome is called a coset. For example, the set of words which corresponds to the coset 0 is the code C. In general, there are $|F|^{n-k}$ cosets.

The nearest-codeword decoding for linear codes can be performed in the following three steps:

1. Compute the syndrome of the received word y according to: $s = H \cdot y^T$.
2. Find a minimum-weight word $e \in F^n$ such that $s = H \cdot e^T$.
3. Decode y to the codeword $c = y - e$.

Note that using this method all words in the same coset are decoded in the same way, and the vector e which is used for decoding these words is called the coset leader.

Example 4. Consider the linear $[7, 4, 3]$ binary Hamming code from Example 3. Assume that the codeword $c = (0, 0, 0, 0, 0, 0, 0)$ was transmitted and there was a single error in the fourth bit so the received word is $y = (0, 0, 0, 1, 0, 0, 0)$. The nearest-codeword decoder is operated as follows:
1. Compute $s = H \cdot y^T$:

$$
\begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix} \cdot
\begin{pmatrix}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{pmatrix} =
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
$$

2. The vector e with the same syndrome $(1, 0, 0)^T$ and minimum Hamming weight is $e = (0, 0, 1, 0, 0, 0)$.

3. The decoded codeword is $y + e = (0, 0, 0, 0, 0, 0, 0)$.

Note that in this case we can find the vector e simply by the corresponding column of the parity check matrix. The full decoding procedure for each syndrome is listed in the following table.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Coset Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0, 1)</td>
<td>(1, 0, 0, 0, 0, 0)</td>
</tr>
<tr>
<td>(0, 1, 0)</td>
<td>(0, 1, 0, 0, 0, 0)</td>
</tr>
<tr>
<td>(0, 1, 1)</td>
<td>(0, 0, 1, 0, 0, 0)</td>
</tr>
<tr>
<td>(1, 0, 0)</td>
<td>(0, 0, 0, 1, 0, 0)</td>
</tr>
<tr>
<td>(1, 0, 1)</td>
<td>(0, 0, 0, 1, 0, 0)</td>
</tr>
<tr>
<td>(1, 1, 0)</td>
<td>(0, 0, 0, 0, 1, 0)</td>
</tr>
<tr>
<td>(1, 1, 1)</td>
<td>(0, 0, 0, 0, 0, 1)</td>
</tr>
</tbody>
</table>

Problem 1. Show that the number of distinct generator matrices of a linear $[n, k, d]$ code over $F = GF(p)$ is $\prod_{i=0}^{k-1} (p^k - p^i)$.

Solution: We count the number of options to create a generator matrix for the code, while building the matrix row by row. For the first row, we can place every non-zero codeword so there are $p^k - 1$ options. For the second row, we can place every codeword which is not linearly dependent on the first row, so there are $p^k - p$ options. Similarly, for the third row we avoid codewords which are in the span of the first two rows, and there are $p^k - p^2$ options, and so on.

Problem 2. For a positive integer m let $n = 2^m - 1$ and let C be the binary $[n, n - m, 3]$ Hamming code. Let H be a parity-check matrix of the code C.

1. Show that for every two distinct columns h_1 and h_2 in H, there is a unique third column in H that equals the sum $h_1 + h_2$.

5
Solution: Since the parity-check matrix H consists of all non-zero vectors of $\{0, 1\}^m$, the column $h_1 + h_2$ also appears in H. Every column appears exactly once in H, hence the uniqueness.

2. Show that the number of codewords of Hamming weight three in C is $\binom{n}{2}/3 = n(n-1)/6$.

Solution: For every $0 \leq i_1, i_2 \leq n-1$ there exists exactly one codeword of weight three in C with ones at position i_1, i_2, i_3, where the value of i_3 is calculated as follows: If h_{i_1}, h_{i_2} is the i_1, i_2-th column in H, then i_3 is the location of the column $h_{i_1} + h_{i_2}$ in H. According to Section 1, such i_3 exists and is unique. Since we count every triple i_1, i_2, i_3 three times, the number of codewords of weight three is $\binom{n}{2}/3$.

3. Show that C contains a codeword of Hamming weight n (that is the all-one codeword 1).

Solution: First we show that $\sum_{h \in \{0, 1\}^m} h = 0$. Divide all $h \in \{0, 1\}^m$ into pairs $\{h, \overline{h}\}$. Each pair sums to 1 and there are $2^m - 1$ such pairs. $2^m - 1$ is even, hence the sum of all the pairs equals 0. If $\sum_{h \in \{0, 1\}^m} h = 0$ then also $\sum_{h \in \{0, 1\}^m \setminus \{0\}} h = 0$. But

$$\sum_{h \in \{0, 1\}^m \setminus \{0\}} h = \sum_{h \in H} h = H \cdot 1^T = 0$$

4. How many codewords are there in C of Hamming weight $n - 1, n - 2, n - 3$?

Solution: According to Section 3, the all-one codeword is in C. Since C is linear, if a word c of Hamming weight k is in C then \overline{c} of Hamming weight $n - k$ is also in C. The minimum distance of C is 3. There are no codewords of Hamming weight 1,2 and as such no codewords of Hamming distance $n - 1, n - 2$. According to Section 2, there are $\binom{n}{2}/3$ codewords of Hamming weight 3, therefore the same amount of codewords have Hamming weight $n - 3$.

Final answer: $0, 0, \binom{n}{2}/3$.