236606 - Deep Learning

Tutorial 6

Yonatan Geifman Yair Feldman
Ran El-Yaniv

Computer Science Department
Technion - Israel Institute of Technology

Winter 2018-2019
Table of Contents

1 Convolution

2 Convolutional Layer

3 Convolutional Neural Networks

4 Backprop of Convolutional Layers
Table of Contents

1 Convolution
2 Convolutional Layer
3 Convolutional Neural Networks
4 Backprop of Convolutional Layers
Convolution For Signal Processing

- Given a signal x (a vector) and a filter f (kernel), the operation $x \ast f$ is defined to be a sliding window pass of f over x where at each point the output is the inner product of the overlap of f and x.

- This concept can be easily extended to 2D.
2D Convolution Example
Convolution Parameters

- Padding \((p)\)- adding \(p\) layers of zeros around \(x\) to control the output size, usually padding is used to keep the output map at the same size as input.
- Strides \((s)\)- step size \((s)\)of the sliding window
- Examples - Powerpoint
Table of Contents

1 Convolution

2 Convolutional Layer

3 Convolutional Neural Networks

4 Backprop of Convolutional Layers
A convolutional layer for input map whose dimension is $N \times N \times N_c$, is a kernel of size $f \times f \times N_c$.

It is spatially connecting a region of $f \times f$ across all feature maps (depth).

Each filter will produce a feature map of depth 1 in the output layer.

For the feature map of each convolution we add a bias and apply an activation function.

The number of filters K is the depth of the output.

The feature map size depends on the strides and padding.
Convolutional Layer Structure

\[
\text{ReLU} \left(\begin{array}{ccc}
\ast & + b_1 \\
\ast & + b_2 \\
\ast & + b_3 \\
\ast & + b_k \\
\end{array} \right) = \text{ReLU} \left(\begin{array}{ccc}
\ast & + b_1 \\
\ast & + b_2 \\
\ast & + b_3 \\
\ast & + b_k \\
\end{array} \right)
\]

Geifman, Golan, Feldman, El-Yaniv
Given a feature map of input shape $N \times N \times D$ and a filter with shape $f \times f \times D$.

- A padding $p =$? and Strides $s = 1$
- The adjusted input size is $N + 2p$
- The output size is $N + 2p - 2\lfloor f/2 \rfloor$
- What if we set $s = 2$?
Pooling Layers

- In general our purpose is to reduce dimensionality while keeping class depended information.

- How can we reduce dimensionality using the tools we have learned so far?

- Pooling layers spatially subsample the feature maps in a defined region.
Max-pooling

- Max pooling is an operation applied spatially that runs the 2D MAX operation for certain filter size.

- It has a kernel size \((f)\) and strides \((s)\), it simply returns the max value of the input region.

- It is applied on each feature map (in depth) independently.

- There are some other variants of pooling layers (Average pooling), but max-pooling is the most common.
Max-pooling Example

Source: Stanford c231 convolutional neural networks for visual recognition
Geifman, Golan, Feldman, El-Yaniv
Table of Contents

1 Convolution
2 Convolutional Layer
3 Convolutional Neural Networks
4 Backprop of Convolutional Layers
Analyzing Alexnet

Consider the following architecture

Let's calculate the number of weights
Analyzing Alexnet
Table of Contents

1. Convolution
2. Convolutional Layer
3. Convolutional Neural Networks
4. Backprop of Convolutional Layers
Convolution in Computation Graph

- Convolution operation can be written as matrix multiplication.

- The kernel is decomposed to a doubly blocked circulant matrix, which is a special case of a Touplitz matrix.

- Forward and backward passes can be applied with a standard matrix multiplication.
Convolution in Computation Graph - Example

- Consider a 4×4 image, and a 3×3 filter (w)

- The image is flatten to a column vector and multiplied by the matrix

$$
\begin{pmatrix}
w_{0,0} & 0 & 0 & 0 \\
w_{0,1} & w_{0,0} & 0 & 0 \\
w_{0,2} & w_{0,1} & 0 & 0 \\
0 & w_{0,2} & 0 & 0 \\
w_{1,0} & 0 & w_{0,0} & 0 \\
w_{1,1} & w_{1,0} & w_{0,1} & w_{0,0} \\
w_{1,2} & w_{1,1} & w_{0,2} & w_{0,1} \\
0 & w_{1,2} & 0 & w_{0,2} \\
w_{2,0} & 0 & w_{1,0} & 0 \\
w_{2,1} & w_{2,0} & w_{1,1} & w_{1,0} \\
w_{2,2} & w_{2,1} & w_{1,2} & w_{1,1} \\
0 & w_{2,2} & 0 & w_{1,2} \\
0 & 0 & w_{2,0} & 0 \\
0 & 0 & w_{2,1} & w_{2,0} \\
0 & 0 & w_{2,2} & w_{2,1} \\
0 & 0 & 0 & w_{2,2}
\end{pmatrix}^T
$$