OPTIMIZING SEARCH ENGINES USING CLICKTHROUGH DATA

Paper By: Thorsten Joachims (Cornell University)
Presented By: Roy Levin (Technion)
Outline

- The idea
- The model
- Learning a ranking function
- Experimental results
- Conclusion
The idea is to use **clickthrough data** for optimizing the retrieval quality of search engines.

- Such clickthrough data is available in abundance and can be recorded at very low cost to the query-log of search engines.
 - Return list of proxy urls instead of actual urls.
- Retrieval functions are learned using an SVM approach.
What Can Clickthrough Data Help?

- **Problem 1:**
 - How to measure the retrieval quality of a search engine?
 - How to compare the performance between two search engines?
 - I.e. which search engine provides better results?
 - Google or MSNSearch?
 - Users are only rarely willing to give explicit feedback.

- **Problem 2:**
 - How to improve the ranking function of search engines?
 - Can we learn something like “for query q, document a should be ranked higher than document b”?
Previous Approaches

- Learning retrieval functions from examples:
 - Typically require training data generated from relevance judgments by experts
 - This makes them difficult and **expensive** to apply
Clickthrough Data in Search Engines

- A triplets \((q, r, c)\) represents clickthrough data
 - Query, \(q\)
 - Ranking presented to the user, \(r\)
 - Set of links the user clicked on, \(c\)

- Users do not click on links at random, they make a (somewhat) informed choice.

- While clickthrough data is typically noisy and not “perfect” relevance judgments, they are likely to convey some information.
<table>
<thead>
<tr>
<th>Rank</th>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kernel Machines</td>
<td>http://svm.first.gmd.de/</td>
</tr>
<tr>
<td>4</td>
<td>An Introduction to SVMs</td>
<td>http://www.support-vector.net/</td>
</tr>
<tr>
<td>6</td>
<td>Archives</td>
<td>http://www.jiscmail.ac.uk/lists/support-vector-machine.html</td>
</tr>
<tr>
<td>8</td>
<td>Royal Holloway Support Vector Machine</td>
<td>http://svm.dcs.rhbnc.ac.uk/</td>
</tr>
<tr>
<td>9</td>
<td>SVM - The Software</td>
<td>http://www.support-vector.net/software.html</td>
</tr>
</tbody>
</table>
There are strong dependencies between the three parts of \((q, r, c)\)

- **Good news:**
 - Users are more likely to click on a link relevant to \(q\)

- **Bad news:**
 - Clicks also depend on the presented ranking \(r\)

- The presented ranking \(r\), depends on the query \(q\)
 - Determined by the retrieval function implemented in the search engine

- It is necessary to consider and model the dependencies of \(c\) on \(q\) and \(r\) appropriately
Empirical experiments with 3 different retrieval strategies averaged over ~1400 queries show:

- The retrieval functions are substantially different in their ranking quality based on subjective judgments.
- However, the observed average clickrank is not very different.
 - Users typically scan only the first 10 links.
 - Hence clicking on a link cannot be interpreted as a relevance judgment on an absolute scale.
What can we assume?

- Assumption:
 - user scanned ranking from top to bottom
- In our “SVM” query example:
 - user must have observed link 2 before clicking on 3, making a decision to not click on it
 - plausible to infer that link 3 is more relevant than link 2 with probability higher than random
 - similarly, 7 is more relevant than links 2, 4, 5, 6
What can we assume? (continued)

- The information obtained from user on r^* (ranking) is:
 - $\text{link}_3 <_{r^*} \text{link}_2$
 - $\text{link}_7 <_{r^*} \text{link}_2$
 - $\text{link}_7 <_{r^*} \text{link}_4$
 - $\text{link}_7 <_{r^*} \text{link}_5$
 - $\text{link}_7 <_{r^*} \text{link}_6$

- Generally:
 - $\{\text{link}_i <_{r^*} \text{link}_j, \forall (i, j) | 1 \leq j < i, i \in C, j \notin C\}$

- Unfortunately, this type of feedback is not suitable for standard machine learning algorithms.
Outline

- The idea
- The model
- Learning a ranking function
- Experimental results
- Conclusion
Traditional IR performance measures

- Why not use traditional performance measures?
 - i.e. precision and recall?
- Not appropriate for multi-grade relevance
- The approach here is different
 - basically all documents can be said to be relevant, it's only a matter of ranking
 - i.e. saying that a document is ranked very high is the same as saying it's irrelevant
Framework for Learning Retrieval Functions

- A query q containing all info related to the search including user properties and etc.
- A document collection $D=\{d_1, d_2, \ldots, d_m\}$
- An optimal ordering function
 - binary relation $r^* \subset D \times D$
- Operational retrieval function f
 - ordering function $r_{f(q)} \subset D \times D$
- f is evaluated in terms of how $r_{f(q)}$ is close to r^*
 - what does close here mean?
Properties of the Ordering Relation

- An ordering relation r is irreflexive
 - i.e. $(1,1) \notin r$

- An ordering relation r is asymmetric
 - i.e. $(3,2) \in r \Rightarrow (2,3) \notin r$

- An ordering relation r is also negatively transitive
 - i.e. $(3,1) \notin r, (7,3) \notin r \Rightarrow (7,1) \notin r$

- For simplicity (for now) lets assume that r^* and $r_{f(q)}$ provide strict orderings
 - i.e. $(a,b) \in D \times D \Rightarrow (a,b) \in r \lor (b,a) \in r$
Performance Measure Using Kendall's Tau

- Most frequently used measure in statistics
 - Used for comparing the ordinal correlation of two random variables
- Given two ordering relations \(r_a \) and \(r_b \)
 - \(P = \# \) of concordant pairs
 - concordant on \(\{2,3\} \) when \(3 \leq r_a 2 \) iff \(3 \leq r_b 2 \)
 - \(Q = \# \) of discordant pairs (inversions)
- \([-1,1]\) \(\exists \tau(r_a, r_b) = \frac{P - Q}{P + Q} = \frac{(m^2) - Q}{m^2} - Q = \frac{m!}{(m/2)!} \frac{2Q}{m^2} = 1 - \frac{2Q}{m^2} \)
Performance Measure Using Kendall's Tau
(an example)

- For example:
 - \(d_1 <_r a d_2 <_r a d_3 <_r a d_4 <_r a d_5 \)
 - \(d_3 <_r b d_2 <_r b d_1 <_r b d_4 <_r b d_5 \)

- \#discordant-pairs=3
 - \(\{d_1, d_2\}, \{d_1, d_3\}, \{d_2, d_3\} \)

- \#concordant-pairs=7

- \(\tau(r_a, r_b) = 1 - \frac{2 \cdot 3}{\binom{5}{2}} = 1 - \frac{6}{\frac{5!}{3!2!}} = 1 - \frac{6}{10} = \frac{2}{5} = 0.4 \)
Why is Kendell’s tau an appropriate measure for IR?

- Depends only on Q for a fixed collection
- In a binary relevance scale:
 - Maximizing the tau is equivalent to minimizing the average rank of the relevant documents
 - Every relevant document receives a lower rank than non-relevant documents
The Axioms of Kemeny and Snell for Strict Orderings

- Taken as a distance measure, Q fulfills the axioms of Kemeny and Snell for strict orderings
 - Based on pairwise comparisons of the form:
 - object \(b \) is preferred to object \(a \), object \(a \) is preferred to object \(d \), . . . Etc
 - Unique distance between any pair of rankings exists
 - The median ranking problem is then to find, for a given set of rankings, a ranking \(X \) for which:
 - the total distance from \(X \) to this set is minimized
A fixed but unknown distribution $Pr(q, r^*)$ of queries and target rankings on D

The goal is to learn a retrieval function $f(q)$ for which the expected Kendall’s tau is maximal

$$\tau_p(f) = \int \tau(r_{f(q)}, r^*)d Pr(q, r^*)$$

The question remains whether it is possible to design learning methods that optimize tau_p?
Outline

- The idea
- The model
- Learning a ranking function
- Experimental results
- Conclusion
Learning a Ranking Function

- **Training sample S**
 \[S = \{(q_1, r_1^*), (q_2, r_2^*), \ldots, (q_n, r_n^*)\} \]

- The learner \(L \) will select a ranking function \(f \) from a family of ranking functions \(F \) that maximize \(\tau \)-s
 \[\tau_s(f) = \frac{1}{n} \sum_{i=1}^{n} \tau(r_{f(q_i)}, r_i^*) \]
Learning a Ranking Function (continued)

- Is it possible to design an algorithm and a family of ranking functions F so that:
 - finding the function f in F for maximizing τ-s is efficient
 - this function generalizes well beyond the training data
Consider the class of linear ranking functions

- \((d_i, d_j) \in f_w(q) \iff \vec{w}\Phi(q, d_i) > \vec{w}\Phi(q, d_j)\)
- \(\vec{w}\) is a weight vector adjusted by learning
- \(\Phi(q, d_i)\) vector of matching features between \(q\) and \(d_i\)
 - As done in classic IR – matching words, page rank of \(d_i\) etc.
- Find weight vector that maximizes the average \(\tau\)
The Weight Vector

- Foreach \(\vec{w} \) ordered points \(\Phi(q, d_i) \) by their projection on \(w \)
- Foreach \(q \) we seek \(\vec{w} \) that orders points correctly
- For entire dataset we seek vector that
 - minimize number of discordant pairs

Example of how two weight vectors \(w_1 \) and \(w_2 \) rank four points
Maximizing tau-s is equivalent to minimizing the number Q of discordant pairs.

This is equivalent to finding \vec{w} that maximizes $\#$ of the following inequalities that are fulfilled:

- $\forall (d_i, d_j) \in r_1^* : \vec{w} \cdot \Phi(q_1, d_i) > \vec{w} \cdot \Phi(q_1, d_j)$
- ...
- $\forall (d_i, d_j) \in r_n^* : \vec{w} \cdot \Phi(q_n, d_i) > \vec{w} \cdot \Phi(q_n, d_j)$

Unfortunately, this problem is NP-Hard.
The Categorization SVM

Learning ⇒ Optimization problem

Minimize: \[
\frac{1}{2} \vec{w} \cdot \vec{w}
\]
Subject to:
\[
\forall i: y_i = 1 \Rightarrow \vec{w} \cdot \vec{\Omega}_i + b \geq 1
\]
\[
\forall i: y_i = -1 \Rightarrow \vec{w} \cdot \vec{\Omega}_i + b \leq -1
\]

Learning ⇒ Optimization problem (with error)

Minimize: \[
\frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_i
\]
Subject to:
\[
\forall i: y_i = 1 \Rightarrow \vec{w} \cdot \vec{\Omega}_i + b \geq 1 - \xi_i
\]
\[
\forall i: y_i = -1 \Rightarrow \vec{w} \cdot \vec{\Omega}_i + b \leq -1 + \xi_i
\]

\[y_i = +1 (-1) \text{ if } \Omega_i \text{ is in class } + (-)\]
The ranking SVM algorithm

Introduce slack variables $\xi_{i,j,k}$

Minimize

$$V(w, \xi) = \frac{1}{2} w \cdot w + C \sum \xi_{i,j,k}$$

Subject to

$$w(\Phi(q_k, d_i) - \Phi(q_k, d_j)) \geq 1 - \xi_{i,j,k}$$

$$\xi_{i,j,k} \geq 0$$

The optimization problem is equivalent to that of a classification SVM on pairwise difference vectors.

Due to this similarity:

The problem can be solved using decomposition algorithms similar to those used for SVM classification (SVM light).
Clickthrough logs are the source of training data

- Hence the full target ranking r^* for q is not available
- $r' \subset r^*$ is available in the logfile

Adapt the Ranking SVM to the case of such partial data by is straightforward

- Just replacing r^* with r'
Outline

- The idea
- The model
- Learning a ranking function
- Experimental results
- Conclusion
Experiment Setup: Meta Search

Search query f_w leads to Combined results and Clickthrough data.
Combined Rankings

- Two separate rankings A and B
- Combined into a single ranking C
- For any top l links in C
 - the top k_a links from A and the top k_b links from B are combined with $|k_a - k_b| \leq 1$
- If the user scans the links of C from top to bottom
 - at any point he has seen almost equally many links from the top of A as from the top of B
Combined Rankings (example)

Ranking A:
1. Kernel Machines
 http://svm.first.gmd.de/
2. SVM-Light Support Vector Machine
3. Support Vector Machine and Kernel Methods, References
 http://www.support--vector.net/SVMRefs.html
4. Lucent Technologies: SVM demo applet
 http://www.support-vector.net/SVTSVMsvt.html
5. Royal Holloway Support Vector Machine
 http://svm.dcs.rhbnec.ac.uk/
 http://www.support-vector.net/software.html
7. Support Vector Machine - Tutorial
 http://www.support-vector.net/tutorial.html
8. Support Vector Machine

Ranking B:
1. Kernel Machines
 http://svm.first.gmd.de/
2. Support Vector Machine
3. An Introduction to Support Vector Machines
4. Archives of SUPPORT-VECTOR-MACHINES
 http://www.jiscmail.ac.uk/lists/SUPPORT-VECTOR-MACHINES.html
5. SVM-Light Support Vector Machine
 http://www.support-vector.net/software.html
7. Lagrangian Support Vector Machine Home Page
8. A Support ... - Bennett, Blue (ResearchIndex)
 http://citeseer.../bennett97support.html

Combined Results:
1. Kernel Machines
 http://svm.first.gmd.de/
2. Support Vector Machine
3. SVM-Light Support Vector Machine
4. An Introduction to Support Vector Machines
5. Support Vector Machine and Kernel Methods, References
6. Archives of SUPPORT-VECTOR-MACHINES@JISCMAIL.AC.UK
 http://www.jiscmail.ac.uk/lists/SUPPORT-VECTOR-MACHINES.html
7. Lucent Technologies: SVM demo applet
8. Royal Holloway Support Vector Machine
 http://svm.dcs.rhbnec.ac.uk/
 http://www.support--vector.net/software.html
10. Lagrangian Support Vector Machine Home Page
Offline Experiment

- **Purpose:**
 - verify that the Ranking SVM can indeed learn based on partial feedback from clickthrough data.
 - Striver displayed the combined results of Google and MSNSearch
 - data was collected by a single user during use in a single month
 - all clickthrough triplets were recorded
 - resulted in 112 queries with a non-empty set of clicks
Framework for Offline Experiments

- Learning a retrieval function using the Ranking SVM requires:
 - designing a suitable feature mapping $\phi(q, d)$ to describe the match between query q and document d
- Using only simplistic, easy to implement features
- Better feature mappings is likely to yield better results
Feature Mapping Type 1

- **Rank in other search engines:**
 - **rank \(X \):** \(\min \left(100 - \frac{\text{combined rank} (x)}{100}, 0 \right) \)
 - **top1\(_X\):** \(\text{combined rank} (x) = 1 \) (binary \{0, 1\})
 - **top10\(_X\):** \(\text{combined rank} (x) \leq 10 \) (binary \{0, 1\})
 - **top50\(_X\):** \(\text{combined rank} (x) \leq 50 \) (binary \{0, 1\})
 - **top1count\(_X\):** ranked \#1 in \(X \) of the 5 search engines
 - **top10count\(_X\):** top 10 rank in \(X \) of 5 search engines
 - **top50count\(_X\):** top 50 rank in \(X \) of 5 search engines
Feature Mapping Type 2

- **Query/Content Match:**
 - **query URL cosine:**
 - cosine between URL-words and query \((range [0, 1])\)
 - **query abstract cosine:**
 - cosine between title-words and query \((range [0, 1])\)
 - **domain name in query:**
 - query contains domain-name from URL \((binary \{0, 1\})\)
Feature Mapping Type 3

- **Popularity-Attributes:**
 - **url length:**
 - length of URL in characters divided by 30
 - **country X:**
 - country code X of URL (binary attribute for each country code)
 - **domain X:**
 - domain X of URL (binary attribute for each domain name)
 - **abstract contains home:**
 - word “home” appears in URL or title (binary attribute)
 - **url contains title:**
 - URL contains “~” (binary attribute)
 - **url X:**
 - URL contains X as an atom (binary attribute)
Offline Experimental Results
Interactive Online Experiment

- **Purpose:**
 - Verify that the learned retrieval function improves retrieval quality as desired
 - Striver search engine was made available to a group of approximately 20 users
 - After ~month the system had collected 260 training queries (with at least one click)
Interactive Online Experimental Results

<table>
<thead>
<tr>
<th>Comparison</th>
<th>more clicks on learned</th>
<th>less clicks on learned</th>
<th>tie (with clicks)</th>
<th>no clicks</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learned vs. Google</td>
<td>29</td>
<td>13</td>
<td>27</td>
<td>19</td>
<td>88</td>
</tr>
<tr>
<td>Learned vs. MSNSearch</td>
<td>18</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>Learned vs. Toprank</td>
<td>21</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>52</td>
</tr>
</tbody>
</table>

- how many queries users click on more/less links from the top of the learned retrieval function

- Comparison with Google
 - on 29 queries users click on more links from learned
 - on 13 queries they click on more links from Google
 - on 27 queries they click on equal number
 - on 19 queries they click on neither
Analysis of the Learned Function

<table>
<thead>
<tr>
<th>weight</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>query_abstract_cosine</td>
</tr>
<tr>
<td>0.48</td>
<td>top10_google</td>
</tr>
<tr>
<td>0.24</td>
<td>query_url_cosine</td>
</tr>
<tr>
<td>0.24</td>
<td>top1count_1</td>
</tr>
<tr>
<td>0.24</td>
<td>top10_msnsearch</td>
</tr>
<tr>
<td>0.22</td>
<td>host_citesee</td>
</tr>
<tr>
<td>0.21</td>
<td>domain_nec</td>
</tr>
<tr>
<td>0.19</td>
<td>top10count_3</td>
</tr>
<tr>
<td>0.17</td>
<td>top1_google</td>
</tr>
<tr>
<td>0.17</td>
<td>country_de</td>
</tr>
<tr>
<td>...</td>
<td>abstract_contains_home</td>
</tr>
<tr>
<td>0.16</td>
<td>top1_hotbot</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>domain_name_in_query</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-0.13</td>
<td>domain_tu-bs</td>
</tr>
<tr>
<td>-0.15</td>
<td>country_fin</td>
</tr>
<tr>
<td>-0.16</td>
<td>top50count_4</td>
</tr>
<tr>
<td>-0.17</td>
<td>url_length</td>
</tr>
<tr>
<td>-0.32</td>
<td>top10count_0</td>
</tr>
<tr>
<td>-0.38</td>
<td>top1count_0</td>
</tr>
</tbody>
</table>
Conclusions

- **Pros:**
 - The feasibility of using clickthrough data in evaluating retrieval performance has been verified.
 - Machine learning techniques can improve retrieval substantially by:
 - tailoring the retrieval function to small and homogenous groups (or even individuals) without prohibitive costs.

- **Cons:**
 - Links that are relevant but ranked very low still remain invisible.
 - Approaches have not been justified in large scales.
 - Whether or not the techniques are workable in real cases is still uncertain.