Introduction to Network Coding, Bounds and Constructions

Tuvi Etzion

Lecture 4

Algebraic Approach for Network Coding
Algebraic Approach

Outline

- Algebraic representation for network coding
- Multicasting is solvable with network coding
- Linear information flow algorithm
- Random network coding
Multicasting in Network Coding

Find two edge disjoint paths from the source S to each receiver.

Fragouli, Soljanin 2006
Multicasting in Network Coding

Two edge disjoint paths from the source S to each receiver.
Multicasting in Network Coding
Multicasting in Network Coding

\[x, y \]

\[S \]

\[A \]

\[B \]

\[C \]

\[D \]

\[E \]

\[F \]

\[R_1 \]

\[R_2 \]

\[R_3 \]
Multicasting in Network Coding

\[
\begin{align*}
A & \xrightarrow{x} B \\
B & \xrightarrow{x} C \\
A & \xrightarrow{x} D \\
B & \xrightarrow{x} E \\
E & \xrightarrow{\alpha_1 x + \alpha_2 y} F \\
C & \xrightarrow{y} D \\
B & \xrightarrow{y} E \\
E & \xrightarrow{\alpha_1 x + \alpha_2 y} F \\
F & \xrightarrow{\alpha_3 x + \alpha_4 \alpha_1 x + \alpha_2 y} R_3 \\
S & \xrightarrow{x, y} A \\
S & \xrightarrow{x} R_1 \\
R_1 & \xrightarrow{\alpha_1, \alpha_2} [0, 1] \\
R_2 & \xrightarrow{1, 0} [\alpha_1 + \alpha_2 \alpha_4, \alpha_2 \alpha_4] \\
R_3 & \xrightarrow{\alpha_1, \alpha_2} [\alpha_1, \alpha_2] \\
\end{align*}
\]
The source S has h messages, $X^{tr} = (x_1, x_2, \ldots, x_h)$. There are N receivers R_1, R_2, \ldots, R_N each one demands all the h messages.

Can all the messages be received simultaneously by receiver R_j?

Yes, if the min-cut between S and R_j has size at least h.

OR

There are h edge-disjoint paths between S and R_j.
Can all the messages be received simultaneously by all receivers?

Yes, if each node can re-encode the information.

Edges carry linear combinations of their parent node inputs, where \(\{\alpha_i\} \) are the coefficients used in these linear combinations.

Edges carry linear combinations of the \(h \) messages.
Edges carry linear combinations of their parent node inputs, where $\{\alpha_i\}$ are the coefficients used in these linear combinations.

The coefficients of the given edge form the local coding vector.

Edges carry linear combinations of the h messages.

The coefficients of these linear combinations form the global coding vector.
Let y^j_i be the symbol on the last edge in the i-th path from S to the receiver R_j.

Let $c_1(e), c_2(e), \ldots, c_h(e)$ be the coefficients of x_1, x_2, \ldots, x_h in the linear combination on the edge e, i.e., if y is the symbol computed on the edge e then

$$y = c_1(e) \cdot x_1 + c_2(e) \cdot x_2 + \cdots + c_h(e) \cdot x_h$$

or

$$y = (c_1(e), c_2(e), \ldots, c_h(e)) \cdot X.$$
Let c^j_i be the global coding vector on the last edge in the i-th path from S to the receiver R_j.

Let C_j be the $h \times h$ matrix whose ith row is c^j_i.

C_j is the transfer matrix of receiver R_j.

Let y^j_i be the symbol computed on the last edge in the path from node S_i to the receiver R_j.

Receiver R_j has to solve the system of equations

$$Y_j = C_j \cdot X,$$

where $Y_j = (y^j_1, y^j_2, \ldots, y^j_h)^{tr}$.
Receiver R_j has to solve the system of equations

$$Y_j = C_j \cdot X,$$

where $Y_j = (y^j_1, y^j_2, ..., y^j_h)^{tr}$.

How can we make sure that each receiver will compute the right messages?

The matrices $C_1, C_2, ..., C_N$ must be of full rank.

Select coefficients $\{\alpha_i\}$ such that

$$f(\{\alpha_i\}) \triangleq \det(C_1) \cdot \det(C_2) \cdots \det(C_N) \neq 0.$$
Let \(f(z_1, z_2, \ldots, z_\eta) \) be a polynomial over \(\mathbb{F}_q \) such that the maximum degree of each variable in a term of \(f(z_1, z_2, \ldots, z_\eta) \) is at most \(d \). Let \(A \) be a set of \(d + 1 \) distinct elements of \(\mathbb{F}_q \).

If \(f(a_1, a_2, \ldots, a_\eta) = 0 \) for all \(\eta \)-tuples in \(A^n \), then \(f \) is identically the zero polynomial.
The proof is by induction on η. For $\eta = 1$, f is a polynomial in a single variable of degree at most d and hence it can have at most d zeros.

Suppose that for some $\eta \geq 1$ the claim is true for all such polynomials. It can be written as

$$f(z_1, \ldots, z_\eta, z_{\eta+1}) = \sum_{i=0}^{d} f_i(z_1, \ldots, z_\eta)z_{\eta+1}^i$$

where f_i are polynomials with degrees of variables bounded by d.

Let $f(z_1, z_2, \ldots, z_\eta, z_{\eta+1})$ be such a polynomial.
Code Design

Proof

\[f(z_1, \ldots, z_\eta, z_{\eta+1}) = \sum_{i=0}^{d} f_i(z_1, \ldots, z_\eta)z_{\eta+1}^i \]

where \(f_i \) are polynomials with degrees bounded by \(d \)

Suppose \(f(z_1, \ldots, z_\eta, z_{\eta+1}) = 0 \) for all \((\eta+1)\)-tuples in \(A^{\eta+1} \)

By the assumption each such \(f_i \) must be identically zero which implies that \(f \) is zero.

Then each polynomial \(f(a_1, \ldots, a_\eta, z_{\eta+1}) \) in \(z_{\eta+1} \) (fixing \((a_1, \ldots, a_\eta)\)) has at least \(d+1 \) zeros, and thus must be identically zero.

Therefore, \(f_i(a_1, \ldots, a_\eta) = 0 \) for all \((a_1, \ldots, a_\eta) \in A^{\eta}\)
Let $f(z_1, z_2, \ldots, z_\eta)$ be a polynomial over \mathbb{F}_q such that

- $f(z_1, z_2, \ldots, z_\eta)$ is not identically zero;
- The maximum degree of each variable in a term of $f(z_1, z_2, \ldots, z_\eta)$ is at most d;
- $q > d$.

Then, there exist values $b_1, b_2, \ldots, b_\eta \in \mathbb{F}_q$ such that

$$f(b_1, b_2, \ldots, b_\eta) \neq 0.$$
$f(z_1, z_2, \ldots, z_\eta)$ is a polynomial over F_q, where

- $f(z_1, z_2, \ldots, z_\eta)$ is not identically zero;
- The sum of degrees of all the variables in a term of $f(z_1, z_2, \ldots, z_\eta)$ is at most d;
- $q > d$.

There exist values $b_1, b_2, \ldots, b_\eta \in F_q$ such that

$$f(b_1, b_2, \ldots, b_\eta) \neq 0.$$

Why not any field?

The polynomial

$$x(x - \alpha^0)(x - \alpha^1) \cdots (x - \alpha^{q-2}),$$

α primitive, evaluated to zero on all elements of F_q.

$x(x + 1) + x + x^2$ is identically zero over F_2.
A multicast network is solvable if and only if the min-cut for each receiver is at least the number of messages.

A network with h sources, where each one has exactly one message, is solvable if and only if the min-cut to each receiver is at least h.

Theorem
Multicast in Undirected Network

The theorem does not hold for undirected graphs.
Introduction to Network Coding, Bounds and Constructions

A SHORT BREAK
A network \(G = (V, E) \) with \(h \) sources \(S_1, \ldots, S_h \in V \) and \(N \) receivers \(R_1, \ldots, R_N \in V \). Each source has one message and each receiver demands all the messages.

Remove each edge which will not disconnect a source-receiver pair. The new subgraph is a minimal multicast subgraph of \(G \); assume \(G \) is minimal.
Linear Information Flow Algorithm

Find h edge-disjoint paths
\[\{(S_i, R_j) : 1 \leq i \leq h\} \]
in the network G
to each receiver $R_j, 1 \leq j \leq N$.

A coding point is an edge where a path (S_i, R_j)
merges with (S_ℓ, R_m), where $i \neq \ell$ and $j \neq m$.

$i = \ell$ same information
on the paths

$j = m$ paths to receiver
are not edge-disjoint
Linear Information Flow Algorithm

Find h edge-disjoint paths $\{ (S_i, R_j) : 1 \leq i \leq h \}$ in the network G to each receiver.

Let $R(\delta)$ be the set of all receivers which have a path with the coding point δ.

Each coding point δ appears in at most one path (S_i, R_j) for R_j (h disjoint paths to R_j).

Let $f^j_\leftarrow(\delta)$ denote the predecessor coding point to δ along the path (S_i, R_j).
For \(R_j \) the algorithm maintains a set \(P_j \) of the last visited \(h \) coding points and a set \(B_j = \{ c^j_1, ..., c^j_h \} \) of the \(h \) global coding vectors.

Initially \(P_j \) contains the source nodes and \(B_j \) contains the unity vectors.

\(B_j \) must contain \(h \) linearly independent vectors.
The network is scanned in a way that an edge is scanned only after all the incoming edges of its parent node were scanned.

At step k, the algorithm assigns a coding vector $c(\delta_k)$ to the coding point δ_k, and updates P_j and B_j for each $R_j \in R(\delta_k)$:

- the associated vector $c(f^j_\leftarrow(\delta_k))$ in B_j with $c(\delta_k)$.
- the point $f^j_\leftarrow(\delta_k)$ in P_j with the point δ_k.
The algorithm selects the vector \(c(\delta_k) \) in a way that for every receiver \(R_j \in R(\delta_k) \) the set \((B_j \setminus \{c(f^j_\rightarrow(\delta_k))\}) \cup \{c(\delta_k)\} \) form a basis for the \(h \)-dimensional space.

Such a choice always exists provided that the field \(\mathbb{F}_q \) has size \(q \geq N \).

When the algorithm terminates \(B_j \) contains the set of linearly independent equations for \(R_j \).
Consider a coding point \(\delta \) with \(m \leq h \) parents and a receiver \(R_j \in R(\delta) \). Let \(V(\delta) \) be the \(m \)-dimensional subspace spanned by the coding vectors of the parents of \(\delta \), and \(V(R_j, \delta) \) be the \((h - 1)\)-dimensional subspace spanned by the elements of \(B_j \) after removing \(c(f_j^\perp(\delta)) \). Then
\[
\dim\{V(\delta) \cap V(R_j, \delta)\} = m - 1.
\]
Lemma 1 Consider a coding point δ with $m \leq h$ parents and a receiver $R_j \in R(\delta)$. Let $V(\delta)$ be the m-dimensional subspace spanned by the coding vectors of the parents of δ, and $V(R_j, \delta)$ be the $(h - 1)$-dimensional subspace spanned by the elements of B_j after removing $c(f^I_j(\delta))$. Then

$$\dim (V(\delta) \cap V(R_j, \delta)) = m - 1.$$

Proof

$$\dim (V(\delta) \cap V(R_j, \delta)) = \dim V(\delta) + \dim V(R_j, \delta) - \dim (V(\delta) \cup V(R_j, \delta))$$

$$= m + h - 1 - \dim (V(\delta) \cup V(R_j, \delta))$$

$$\dim ((V(\delta) \cup V(R_j, \delta)) = h$$ since $V(\delta)$ contains $c(f^I_j(\delta))$ and $V(R_j, \delta)$ contains the rest of the basis for B_j.
The algorithm successfully identifies a valid network code using any field \mathbb{F}_q of size $q \geq N$.

Lemma

Consider a coding point δ with $m \leq h$ parents and a receiver $R_j \in R(\delta)$.

Proof

The coding vector $c(\delta)$ is a nonzero vector in the m-dimensional subspace $V(\delta)$ spanned by the coding vectors of the parents of δ.

There are $q^m - 1$ vectors feasible for $c(\delta)$.
The coding vector $c(\delta)$ is a nonzero vector in the m-dimensional subspace $V(\delta)$ spanned by the coding vectors of the parents of δ.

There are $q^m - 1$ vectors feasible for $c(\delta)$.

If the network is solvable for receiver R_j, then $c(\delta)$ does not belong to the intersection of $V(\delta)$ and the $(h - 1)$-dimensional subspace $V(R_j, \delta)$ spanned by the elements of B_j after $c \left(f^j_{\leftarrow}(\delta) \right)$ is removed.
The coding vector $c(\delta)$ has to be a nonzero vector in the m-dimensional subspace $V(\delta)$ spanned by the coding vectors of the parents of δ. There are $q^m - 1$ such vectors, feasible for $c(\delta)$. If the network solvable for R_j, then $c(\delta)$ is not in the intersection of $V(\delta)$ and $V(R_j, \delta)$ spanned by the elements of B_j after removing $c(f_j(\delta))$.

ByLemma 1, the dimension of this intersection is $m - 1$, and thus the number of vectors it excludes from $V(\delta)$ is $q^{m-1} - 1$.

The number of vectors excluded by the receivers in $R(\delta)$ is at most
\[|R(\delta)| (q^{m-1} - 1) \leq N(q^{m-1} - 1) \]

Therefore, if $q^m - 1 > N(q^{m-1} - 1) \iff q \geq N$, then a valid value for $c(\delta)$ can be found.
Network nodes independently and randomly select linear mappings from inputs links onto outputs links over some field.

Theorem

In a multicast solvable network with N receivers in which the coefficients for the linear combinations are chosen independently and uniformly over \mathbb{F}_q, the success probability that all the N receivers will obtain the information sent by the source node is at least $\left(1 - \frac{N}{q}\right)^\eta$ for $q > N$, where η is the total number of coefficients in the coding points.
Let $f(z_1, z_2, ..., z_\eta)$ be a polynomial over \mathbb{F}_q such that

- $f(z_1, z_2, ..., z_\eta)$ is not identically zero;
- The degree of a variable in a term of f is at most d;
- $q > d$.

If the values of $z_1, z_2, ..., z_\eta$ are chosen uniformly at random from \mathbb{F}_q then

$$\Pr\{f(z_1, z_2, ..., z_\eta) = 0\} \leq 1 - \left(1 - \frac{d}{q}\right)^\eta$$

Weaker result

Ho, Médard, Koetter, Karger, Effros, Shi, Leong, 2006
Let $f(z_1, z_2, ..., z_\eta)$ be a polynomial over \mathbb{F}_q

- $f(z_1, z_2, ..., z_\eta)$ is not identically zero;
- Degree of a variable in term of f is at most d;
- $q > d$.

If the values of $z_1, z_2, ..., z_\eta$ are chosen uniformly at random from \mathbb{F}_q then

$$\Pr\{f(z_1, z_2, ..., z_\eta) = 0\} \leq 1 - \left(1 - \frac{d}{q}\right)^\eta$$

The proof is by induction on η

For $\eta = 1$, f is a polynomial in a single variable of degree at most d.

An element of \mathbb{F}_q is a root of f with probability at most $\frac{d}{q} = 1 - (1 - \frac{d}{q})^1$
Random Network Coding

Proof

The proof is by induction on η. For $\eta = 1$, f is a polynomial in a single variable of degree at most d. An element of \mathbb{F}_q is a root of f with probability at most

$$d/q = 1 - (1 - d/q)^1$$

For $\eta > 1$, we assume that the claim holds for polynomials with fewer than η variables.

We express f as

$$f(z_1, ..., z_\eta) = z_\eta^{d_1} f_1(z_1, ..., z_{\eta-1}) + f_2(z_1, ..., z_\eta),$$

where $d_1 \leq d$ is the highest degree of z_η in f, f_1 is not identically zero, and the degrees of z_η in f_2 are smaller than d_1.

$$\Pr(f = 0) = \Pr(f_1 = 0) \cdot \Pr(f = 0|f_1 = 0) + \Pr(f_1 \neq 0) \cdot \Pr(f = 0|f_1 \neq 0)$$
For $\eta > 1$, we assume that the claim holds for polynomials with fewer than η variables. We express f as

$$f(z_1, \ldots, z_\eta) = z_\eta^{d_1} f_1(z_1, \ldots, z_{\eta-1}) + f_2(z_1, \ldots, z_\eta),$$

where $d_1 \leq d$ and f_1 is not identically zero.

$$\Pr(f = 0) = \Pr(f_1 = 0) \cdot \Pr(f = 0 | f_1 = 0)$$

$$+ \Pr(f_1 \neq 0) \cdot \Pr(f = 0 | f_1 \neq 0)$$

1. $\Pr(f_1 = 0) \leq 1 - (1 - d/q)^{\eta-1}$ by the induction hypothesis

2. $\Pr(f = 0 | f_1 = 0) \leq 1$

3. $\Pr(f = 0 | f_1 \neq 0) \leq d/q$, as a polynomial in z_η
Random Network Coding

Proof

\[f(z_1, \ldots, z_\eta) = z_\eta^{d_1} f_1(z_1, \ldots, z_{\eta-1}) + f_2(z_1, \ldots, z_\eta), \]

where \(d_1 \leq d \) and \(f_1 \) is not identically zero polynomial.

\[
\Pr(f = 0) = \Pr(f_1 = 0) \cdot \Pr(f = 0 | f_1 = 0) + \Pr(f_1 \neq 0) \cdot \Pr(f = 0 | f_1 \neq 0)
\]

1. \(\Pr(f_1 = 0) \leq 1 - (1 - d/q)^{\eta-1} \) by the induction hypothesis.
2. \(\Pr(f = 0 | f_1 = 0) \leq 1. \)
3. \(\Pr(f = 0 | f_1 \neq 0) \leq d/q, \) as a polynomial in \(z_\eta. \)

\[
\Pr(f = 0) \leq \Pr(f_1 = 0) + (1 - \Pr(f_1 = 0)) \frac{d}{q}
\]

by 2, 3

\[
= \Pr(f_1 = 0)\left(1 - \frac{d}{q}\right) + \frac{d}{q}
\]

\[
\leq (1 - (1 - \frac{d}{q})^{\eta-1})\left(1 - \frac{d}{q}\right) + \frac{d}{q}
\]

by 1

\[
= 1 - \left(1 - \frac{d}{q}\right)^{\eta}
\]
A multicast network is solvable if and only if the min-cut for each receiver is at least the number of messages.

A network with h sources, where each one has exactly one message, is solvable if and only if the min-cut to each receiver is at least h.
Random Network Coding

Multicast Networks

Network nodes independently and randomly select linear mappings from inputs links onto outputs links over some field.

Theorem

In a multicast solvable network with N receivers in which the coefficients for the linear combinations are chosen independently and uniformly over \mathbb{F}_q, the success probability that all the N receivers will obtain the information sent by the source node is at least $(1 - \frac{N}{q})^\eta$ for $q > N$, where η is the maximum number of coding points employed by a receiver.
Let \(f(z_1, z_2, ..., z_\eta) \) be a polynomial over \(\mathbb{F}_q \) such that

- \(f(z_1, z_2, ..., z_\eta) \) is not identically zero;
- The degree of a variable in a term of \(f \) is at most \(d \); the total degree of a term is at most \(d\eta' \);
- \(q > d \).

If the values of \(z_1, z_2, ..., z_\eta \) are chosen uniformly at random from \(\mathbb{F}_q \) then

\[
\Pr\{f(z_1, z_2, ..., z_\eta) = 0\} \leq 1 - \left(1 - \frac{d}{q}\right)^{\eta'}
\]
Let $f(z_1, z_2, ..., z_\eta)$ be a nonzero polynomial over \mathbb{F}_q such that the sum of degrees of all the variables in a term of $f(z_1, z_2, ..., z_\eta)$ is at most d. If values $a_1, a_2, ..., a_\eta \in \mathbb{F}_q$ are chosen uniformly at random from a subset A of \mathbb{F}_q, then the probability that $f(a_1, a_2, ..., a_\eta) = 0$ is at most $d/|A|$.
The proof is by induction on η.

For $\eta = 1$, f is a polynomial in a single variable of degree at most d and hence it can have at most d zeros and the claim follows.

Suppose that the claim is true for all the polynomials with at most $\eta - 1$ variables, $\eta > 1$.

Let f be a polynomial with η variables, where the sum of degrees in a term is at most d.
Let f be a polynomial with η variables, where the sum of degrees in a term is at most d. It can be written as

$$f(z_1, z_2, \ldots, z_\eta) = \sum_{i=0}^{k} z_1^i f_i(z_2, \ldots, z_\eta)$$

where $k \leq d$ is the highest degree of z_1 in term of f. $f_k(z_2, \ldots, z_\eta)$ is not identically zero and the sum of degrees of its terms is at most $d - k$.

Proof
It can be written as

\[
f(z_1, z_2, \ldots, z_\eta) = \sum_{i=0}^{k} z_1^i f_i(z_2, \ldots, z_\eta)
\]

where \(k \leq d \) is the highest degree of \(z_1 \) in term of \(f \).

\(f_k(z_2, \ldots, z_\eta) \) is not identically zero and the sum of degrees of its terms is at most \(d - k \).

Hence, by the assumption the probability that \(f_k(z_2, \ldots, z_\eta) = 0 \) is at most \(\frac{d-k}{|A|} \).
Random Network Coding

Proof

\[f(z_1, z_2, \ldots, z_\eta) = \sum_{i=0}^{k} z_1^i f_i(z_2, \ldots, z_\eta) \]

where \(k \leq d \) is the highest degree of \(z_1 \) in term of \(f \). \(f_k(z_2, \ldots, z_\eta) \) is not identically zero and the sum of degrees of its terms is at most \(d - k \). Hence, by the assumption the probability that \(f_k(z_2, \ldots, z_\eta) = 0 \) is at most \(\frac{d-k}{|A|} \).

If \(f_k(a_2, \ldots, a_\eta) \neq 0 \) we define

\[g(z_1) = f(z_1, a_2, \ldots, a_\eta) = \sum_{i=0}^{k} z_1^i f_i(a_2, \ldots, a_\eta). \]

\(g(z_1) \) is a nonzero polynomial of degree \(k \) and hence the probability that \(g(a_1) = 0 \) is at most \(\frac{k}{|A|} \).
Proof

Hence, by the assumption the probability that

\[f_k(z_2, \ldots, z_\eta) = 0 \]

is at most \(\frac{d-k}{|A|} \). If \(f_k(a_2, \ldots, a_\eta) \neq 0 \),

\[g(z_1) = f(z_1, a_2, \ldots, a_\eta) = \sum_{i=0}^{k} z_1^i f_i(a_2, \ldots, a_\eta). \]

\(g(z_1) \) is a nonzero polynomial of degree \(k \) and hence the probability that \(g(a_1) = 0 \) is at most \(\frac{k}{|A|} \).

Let \(B \) be the event that \(g(a_1) = f(a_1, a_2, \ldots, a_\eta) = 0 \).

Let \(C \) be the event that \(f_k(a_2, \ldots, a_\eta) = 0 \).

\[\Pr(C) \leq \frac{d-k}{|A|}, \quad \Pr(B|\overline{C}) \leq \frac{k}{|A|} \]
Let B be the event that $g(a_1) = f(a_1, a_2, \ldots, a_\eta) = 0$.

Let C be the event that $f_k(a_2, \ldots, a_\eta) = 0$.

\[
\Pr(C) \leq \frac{d-k}{|A|}, \quad \Pr(B|\bar{C}) \leq \frac{k}{|A|}
\]

\[
\Pr(B) = \Pr(B|C)\Pr(C) + \Pr(B|\bar{C})\Pr(\bar{C}) \leq \Pr(C) + \Pr(B|\bar{C}) \leq \frac{d-k}{|A|} + \frac{k}{|A|} = \frac{d}{|A|}.
\]
Coherent network coding - the source and the destination nodes know the topology of the network and the network code.

Noncoherent network coding - the source and the destination nodes don’t know the topology of the network and the network code.
Introduction to Network Coding, Bounds and Constructions

END OF LECTURE 4