Random Network Coding

Outline

- Code design and alphabet size
- The line graph and the subtree graph
- Random network coding
- Coherent vs. noncoherent network coding
A network G with h sources S_1, \ldots, S_h.

Each source has one message.

N receivers, each one demands all the h messages.

G is a minimal multicast graph.
Select a coding vector for each edge of the network such that the matrices C_1, C_2, \ldots, C_N will be of full rank.

The coding vector of the edge e is in the linear span of the coding vectors of the input edges to the parent node of e.

The coding vectors should be selected only for the coding points.
For a directed graph G the line graph $L(G)$ is defined as follows.

An edge e in G is a vertex $v(e)$ in $L(G)$.

If the edge e_1 in G is an input of a vertex v and the edge e_2 in G is an output of the vertex v in G, then there is an edge from $v(e_1)$ to $v(e_2)$ in $L(G)$.

Fragouli, Soljanin 2006
Given a minimal multicast network G with h sources and N receivers construct its line graph $L(G)$.

The vertex in $L(G)$ which is formed from the edge (u, v) of G will be denoted by uv.

If the edge (u, v) of G is an input for a receiver R then the vertex uv in $L(G)$ is labelled by R.
Code Design – the Line Graph
Given the line graph \(L(G) \) of a minimal multicast network \(G \), the subtree graph \(\Gamma = (G, S, R) \) is defined by:

Each vertex in \(L(G) \) which is either \(S_iu \) or has in-degree greater than one, is a root of a maximal subtree \(T \).

Each maximal subtree is a vertex in \(\Gamma \). A vertex in \(\Gamma \) is labelled with the source and receivers that it contains in \(L(G) \).
Each vertex in \(L(G) \), which is either \(S_iu \) or has in-degree greater than one, is a root of a maximal subtree \(T \).

Each maximal subtree is a vertex in \(\Gamma \). A vertex in \(\Gamma \) is labelled with the source and receivers that it contains in \(L(G) \).

There is an edge from a vertex \(T_1 \) of \(\Gamma \) to a vertex \(T_2 \) of \(\Gamma \) if there is an edge from a vertex of \(T_1 \) to vertex of \(T_2 \) in \(L(G) \).
Each vertex in $L(G)$, which is either $S_i u$ or has in-degree greater than one, is a root of a maximal subtree T.

Each maximal subtree is a vertex in Γ. A vertex in Γ is labelled with the source and receivers that it contains in $L(G)$.

The maximal subtrees form a partition of the vertices in $L(G)$.
Code Design – Line Graph
Code Design – Subtree Graph

![Subtree Graph Diagram]
Code Design – Subtree Graph

Each receiver labels h nodes.

Nodes labelled by R_i are connected to the sources by h node-disjoint paths.

The graph has been made minimal – edge removed then multicast is lost.
For a network with 2 sources the subtree graph Γ with n nodes has the following properties:
1. A parent and a child subtree have a child or a receiver in common, or both.
2. Each coding subtree contains at least two receiver nodes.
3. Each source subtree contains a receiver node.

Γ has $n - 2$ coding subtrees since two nodes contain the sources.
For a network with 2 sources the subtree graph Γ with n nodes has the following properties:

1. A parent and a child subtree have a child or a receiver in common, or both.
2. Each coding subtree contains at least two receiver nodes.
3. Each source subtree contains a receiver node.

Γ has $n - 2$ coding subtrees since two nodes contain the sources.
For each node select a vector from \mathbb{F}_q^h such that:

The assignment to the node with S_i is e_i.

Vectors of the nodes which are labelled by the same receiver are linearly independent.

The vector assigned to a node is in the linear span of the vectors assigned to its parents.
Code Design – Subtree Graph

\[
\begin{align*}
S_1 R_2 & \rightarrow [1, 0] \\
R_1 R_3 & \rightarrow [1, 1] \\
R_2 R_3 & \rightarrow [0, 1] \text{ or } [1, \beta] \\
S_2 R_1 & \rightarrow [0, 1] \\
\end{align*}
\]

\[\beta \in \mathbb{F}_q \setminus \{0, 1\}\]
Multicasting is Solvable

Theorem
For networks with 2 sources and \(N \) receivers \(q \geq \left\lfloor \sqrt{2N - 7/4 + 1/2} \right\rfloor \) is sufficient, and for some networks, necessary.

Fragouli, Soljanin 2006

Theorem
For networks with \(h \) sources and \(N \) receivers \(q \geq N \) is sufficient.

No network for which \(q > O(\sqrt{N}) \) is necessary is known.
Coding for Networks with 2 Sources

Let V be the following set of $q + 1$ vectors
\{\[0, 1\], [1, 0]\} ∪ \{[1, α^i] : 0 ≤ i ≤ q − 2\}, where
$α$ is a primitive element of $𝔽_q$.

Any two vectors in V

1. Linearly independent.
2. Span V.

⇒ Vectors in V can be treated as colors.
Coding for Networks with 2 Sources

\[\Gamma - \text{the subtree graph with } n \text{ vertices.} \]

\[\Omega - \text{an undirected graph with the } n \text{ vertices as } \Gamma. \]

Two vertices of \(\Omega \) are connected by an edge if:

1. the corresponding vertices of the subtrees of \(\Gamma \) are labelled with the same receiver.

2. the corresponding vertices of the subtrees of \(\Gamma \) have a common child.
Coding for Networks with 2 Sources

Two vertices of \(\Omega \) are connected by an edge if:

1. If the corresponding vertices of the subtrees of \(\Gamma \) are labelled with the same receiver.

2. if the corresponding vertices of the subtrees of \(\Gamma \) have a common child.

Two vertices of \(\Omega \) are connected by an edge if the corresponding subtrees of \(\Gamma \) cannot have the same coding vector.
Coding for Networks with 2 Sources

\[\Gamma\]

\[\Omega\]

\[\text{flow}\]
Coding for Networks with 2 Sources

\[\begin{aligned}
S_1 & \rightarrow R_2 \\
S_2 & \rightarrow R_1 \\
R_1 & \rightarrow R_2 \\
R_2 & \rightarrow R_3 \\
R_3 & \rightarrow R_2
\end{aligned} \]

\[\begin{aligned}
\Omega & \rightarrow [1, 0] \\
\Omega & \rightarrow [0, 1]
\end{aligned} \]
Bounds on the Alphabet Size

Lemma
Every vertex in \(\Omega \) has degree at least 2.

Proof
For source nodes: If \(n = 3 \) then the two sources have exactly one child which shares a receiver with each parent. If \(n > 3 \) then the two source subtrees have at least one child which shares a receiver or a child with each parent.
Lemma

Every vertex in Ω has degree at least 2.

Proof

For coding subtrees: Each coding subtree has two parents. It cannot be labelled with the same coding vector as either of its parents. Hence, in Ω there is an edge between a subtree and its parents. Thus, it has degree at least two.
Every k-chromatic graph has at least k vertices of degree at least $k - 1$.

In Ω there are at most N receiver edges and at most $n - 2$ flow edges.

Each receiver is labelled in at most two nodes. Flow edges exist between vertices with a common child, i.e. between parents of a coding subtree and there are $n - 2$ coding subtrees.
Bounds on the Alphabet Size

Theorem

For networks with 2 sources and N receivers, $q \geq \left\lfloor \sqrt{2N - 7/4} + 1/2 \right\rfloor$ is sufficient, and for some networks, necessary.

Proof

Assume that Ω has n vertices and chromatic number $\chi(\Omega) = k \leq n$. We will count the number of edges in Ω in two different ways.
Theorem

For 2 sources, and N receivers $q \geq \left\lceil \sqrt{2N - \frac{7}{4}} + \frac{1}{2} \right\rceil$ is sufficient, and for some networks, necessary.

Proof

Assume that Ω has n vertices and chromatic number $\chi(\Omega) = k \leq n$. We will count the number of edges in Ω in two different ways.

1. By the first two lemmas: $E(\Omega) \geq \frac{k(k-1)}{2} + n - k$.
2. By the third lemma: $E(\Omega) \leq N + n - 2$.

Hence, $N \geq \frac{k(k-1)}{2} - k + 2$. Since we have $q + 1$ colors, we assign $k = q + 1$ and solve a quadratic equation for q, which implies $q \geq \left\lceil \sqrt{2N - \frac{7}{4}} + \frac{1}{2} \right\rceil$.
Bounds on the Alphabet Size

- **$h = 2$** messages.
- **N** receivers.

1. **$h > 2$** messages.

 Field size: $q \geq \left\lceil \sqrt{2N - \frac{7}{4}} + \frac{1}{2} \right\rceil$

 necessary and sufficient.

2. **$N_{2,r,2}$**

 $N = \binom{r}{2}$

 Field size: $q \geq r - 1 \geq \left\lceil \sqrt{2N} \right\rceil$
Introduction to Network Coding, Bounds and Constructions

A SHORT BREAK
Network nodes independently and randomly select linear mappings from inputs links onto outputs links over some field.

In a multicast solvable network with N receivers in which the coefficients for the linear combinations are chosen independently and uniformly over \mathbb{F}_q, the success probability that all the N receivers will obtain the information sent by the source node is at least $(1 - N/q)^\eta$ for $q > N$, where η is the maximum number of coding points employed by a receiver.
Let \(f(z_1, z_2, ..., z_\eta) \) be a polynomial over \(\mathbb{F}_q \) such that
- \(f(z_1, z_2, ..., z_\eta) \) is not identically zero;
- The degree of a variable in a term of \(f \) is at most \(d \); the total degree of a term is at most \(d\eta' \);
- \(q > d \).

If the values of \(z_1, z_2, ..., z_\eta \) are chosen uniformly at random from \(\mathbb{F}_q \) then
\[
\Pr\{f(z_1, z_2, ..., z_\eta) = 0\} \leq 1 - \left(1 - \frac{d}{q}\right)^{\eta'}
\]
Let \(f(z_1, z_2, ..., z_\eta) \) be a nonzero polynomial over \(\mathbb{F}_q \) such that the sum of degrees of all the variables in a term of \(f(z_1, z_2, ..., z_\eta) \) is at most \(d \). If values \(a_1, a_2, ..., a_\eta \in \mathbb{F}_q \) are chosen uniformly at random from a subset \(A \) of \(\mathbb{F}_q \), then the probability that \(f(a_1, a_2, ..., a_\eta) = 0 \) is at most \(\frac{d}{|A|} \).
The proof is by induction on η. For $\eta = 1$, f is a polynomial in a single variable of degree at most d and hence it can have at most d zeros and the claim follows.

Suppose that the claim is true for all the polynomials with at most $\eta - 1$ variables, $\eta > 1$. Let f be a polynomial with η variables, where the sum of degrees in a term is at most d. It can be written as

$$f(z_1, z_2, \ldots, z_\eta) = \sum_{i=0}^{k} z_1^i f_i(z_2, \ldots, z_\eta)$$

where $k \leq d$ is the highest degree of z_1 in term of f.

Proof
Random Network Coding

Proof

\[f(z_1, z_2, \ldots, z_\eta) = \sum_{i=0}^{k} z_1^i f_i(z_2, \ldots, z_\eta) \]

where \(k \leq d \) is the highest degree of \(z_1 \) in term of \(f \). \(f_k(z_2, \ldots, z_\eta) \) is not identically zero and the sum of degrees of its terms is at most \(d - k \). Hence, by the assumption the probability that \(f_k(z_2, \ldots, z_\eta) = 0 \) is at most \(\frac{d-k}{|A|} \). If \(f_k(a_2, \ldots, a_\eta) \neq 0 \) we define

\[g(z_1) = f(z_1, a_2, \ldots, a_\eta) = \sum_{i=0}^{k} z_1^i f_i(a_2, \ldots, a_\eta). \]

\(g(z_1) \) is a nonzero polynomial of degree \(k \) and hence the probability that \(g(a_1) = 0 \) is at most \(\frac{k}{|A|} \).
Hence, by the assumption the probability that
\[f_k(z_2, \ldots, z_\eta) = 0 \] is at most \(\frac{d-k}{|A|} \). If \(f_k(a_2, \ldots, a_\eta) \neq 0 \),

\[g(z_1) = f(z_1, a_2, \ldots, a_\eta) = \sum_{i=0}^{k} z_1^i f_i(a_2, \ldots, a_\eta). \]

g\(z_1\) is a nonzero polynomial of degree \(k \) and hence the probability that \(g(a_1) = 0 \) is at most \(\frac{k}{|A|} \).

Let \(B \) be the event that \(g(a_1) = f(a_1, a_2, \ldots, a_\eta) = 0 \).

Let \(C \) be the event that \(f_k(a_2, \ldots, a_\eta) = 0 \).

\[\Pr(C) \leq \frac{d-k}{|A|}, \quad \Pr(B|\overline{C}) \leq \frac{k}{|A|}. \]

\[\Pr(B) = \Pr(B|C)\Pr(C) + \Pr(B|\overline{C})\Pr(\overline{C}) \]

\[\leq \Pr(C) + \Pr(B|\overline{C}) \leq \frac{d-k}{|A|} + \frac{k}{|A|} = \frac{d}{|A|}. \]
A multicast network is solvable if and only if the min-cut for each receiver is at least the number of messages.

A network with \(h \) sources, where each one has exactly one message, is solvable if and only if the min-cut to each receiver is at least \(h \).
Multicast Networks

Network nodes independently and randomly select linear mappings from inputs links onto outputs links over some field.

Theorem

In a multicast solvable network with N receivers in which the coefficients for the linear combinations are chosen independently and uniformly over \mathbb{F}_q, the success probability that all the N receivers will obtain the information sent by the source node is at least $(1 - \frac{N}{q})^\eta$ for $q > N$, where η is the total number of coefficients in the coding points.
Let $f(z_1, z_2, \ldots, z_\eta)$ be a polynomial over \mathbb{F}_q such that

- $f(z_1, z_2, \ldots, z_\eta)$ is not identically zero;
- The degree of a variable in a term of f is at most d;
- $q > d$.

If the values of z_1, z_2, \ldots, z_η are chosen uniformly at random from \mathbb{F}_q then

$$\Pr\{f(z_1, z_2, \ldots, z_\eta) = 0\} \leq 1 - \left(1 - \frac{d}{q}\right)^\eta$$

Ho, Médard, Koetter, Karger, Effros, Shi, Leong, 2006
Let $f(z_1, z_2, ..., z_\eta)$ be a polynomial over \mathbb{F}_q
- $f(z_1, z_2, ..., z_\eta)$ is not identically zero;
- Degree of a variable in term of f is at most d;
- $q > d$.

If the values of $z_1, z_2, ..., z_\eta$ are chosen uniformly at random from \mathbb{F}_q then

$$\Pr\{f(z_1, z_2, ..., z_\eta) = 0\} \leq 1 - \left(1 - \frac{d}{q}\right)^\eta$$

Proof

The proof is by induction on η. For $\eta = 1$, f is a polynomial in a single variable of degree at most d. An element of \mathbb{F}_q is a root of f with probability at most

$$\frac{d}{q} = 1 - \left(1 - \frac{d}{q}\right)^1$$
Proof

The proof is by induction on η. For $\eta = 1$, f is a polynomial in a single variable of degree at most d. An element of \mathbb{F}_q is a root of f with probability at most

$$d/q = 1 - (1 - d/q)^1$$

For $\eta > 1$, we assume that the claim holds for polynomials with fewer than η variables. We express f as

$$f(z_1, \ldots, z_{\eta}) = z_\eta^{d_1} f_1(z_1, \ldots, z_{\eta-1}) + f_2(z_1, \ldots, z_{\eta}),$$

where $d_1 \leq d$ and f_1 is not identically zero polynomial.

$$\Pr(f = 0) = \Pr(f_1 = 0) \cdot \Pr(f = 0|f_1 = 0) + \Pr(f_1 \neq 0) \cdot \Pr(f = 0|f_1 \neq 0)$$
Random Network Coding

Proof

For $\eta > 1$, we assume that the claim holds for polynomials with fewer than η variables. We express f as

$$f(z_1, \ldots, z_\eta) = z_\eta^{d_1} f_1(z_1, \ldots, z_{\eta-1}) + f_2(z_1, \ldots, z_\eta),$$

where $d_1 \leq d$ and f_1 is not identically zero polynomial.

$$\Pr(f = 0) = \Pr(f_1 = 0) \cdot \Pr(f = 0|f_1 = 0) + \Pr(f_1 \neq 0) \cdot \Pr(f = 0|f_1 \neq 0)$$

1. $\Pr(f_1 = 0) \leq 1 - (1 - d/q)^{\eta-1}$ by the induction hypothesis.
2. $\Pr(f = 0|f_1 = 0) \leq 1$.
3. $\Pr(f = 0|f_1 \neq 0) \leq d/q$, as a polynomial in z_η.
Random Network Coding

Proof

\[f(z_1, \ldots, z_\eta) = z_\eta^{d_1} f_1(z_1, \ldots, z_{\eta-1}) + f_2(z_1, \ldots, z_\eta), \]
where \(d_1 \leq d \) and \(f_1 \) is not identically zero polynomial.

\[\Pr(f = 0) = \Pr(f_1 = 0) \cdot \Pr(f = 0|f_1 = 0) \]
\[+ \Pr(f_1 \neq 0) \cdot \Pr(f = 0|f_1 \neq 0) \]

1. \(\Pr(f_1 = 0) \leq 1 - (1 - \frac{d}{q})^{\eta-1} \) by the induction hypothesis.
2. \(\Pr(f = 0|f_1 = 0) \leq 1. \)
3. \(\Pr(f = 0|f_1 \neq 0) \leq \frac{d}{q}, \) as a polynomial in \(z_\eta. \)

\[\Pr(f = 0) \leq \Pr(f_1 = 0) + (1 - \Pr(f_1 = 0)) \cdot \frac{d}{q} \] by 2, 3
\[= \Pr(f_1 = 0)(1 - \frac{d}{q}) + \frac{d}{q} \]
\[\leq (1 - (1 - \frac{d}{q})^{\eta-1})(1 - \frac{d}{q}) + \frac{d}{q} \] by 1
\[= 1 - (1 - \frac{d}{q})^{\eta} \]
Models for Network Coding

Coherent network coding - the source and the destinations nodes know the topology of the network and the network code.

Noncoherent network coding - the source and the destinations nodes don’t know the topology of the network and the network code.
The source sends h messages $X = (x_1, x_2, \ldots, x_h)^t$. A receiver obtains the message $Y = (y_1, y_2, \ldots, y_h)^t$, $Y = A \cdot X$, where A is a $h \times h$ transfer matrix.

Now assume that x_i is a message (packet) of length N over \mathbb{F}_q. Hence, X, Y are $h \times N$ matrices over \mathbb{F}_q and the transfer matrix A is a $h \times h$ matrix. The receiver obtains $Y = A \cdot X$.

Coherent Network Coding

one source, one receiver
Research Problems

Improve the upper bound on the alphabet size for solvable multicast networks with h messages?

Improve the upper bound on the alphabet size for solvable multicast networks with 3 messages?
Research Problems

Improve the lower bound on the alphabet size for solvable multicast networks with h messages?

Can the alphabet size for solvable multicast networks with h messages be different for linear and nonlinear codes (for general network)?