Approximation Algorithms (236521) - Winter 2018
HW5 (Final)

Due on: 19.2.19 (Tuesday) by 18:00.

Guidelines:

• The assignment should be submitted individually.

• Discussing questions in this assignment with any individual (other than the course staff) is strictly prohibited.

• You may use claims shown in class. You may not use claims from previous home assignments.

• Claims from previous parts of a given question can be used even if they were not proved.

• You are required to provide complete and formal proofs of your claims.

• Please start each question in a new page.

• The assignment should be submitted electronically via the GR system.

Good Luck!

Question 1 (25 pt)

1. (10 pt) For an integer \(k \geq 2 \), a \(k \)-hypergraph is a pair \(H = (V, E) \), where \(V \) is a set of vertices and \(E \) is a set of hyperedges. A hyperedge \(e \in E \) is a non-empty subset of at most \(k \) vertices; that is, \(E \subseteq \{ S \subseteq V | S \neq \emptyset, |S| \leq k \} \).

A matching in a \(k \)-hypergraph \(H = (V, E) \) is a subset \(M \subseteq E \) such that for every \(e_1, e_2 \in M \), \(e_1 \neq e_2 \), it holds that \(e_1 \cap e_2 = \emptyset \).

A matching \(M \) is maximal if it is not strictly contained in another matching.

Give a polynomial time \(k \)-approximation algorithm for the problem of finding a minimum cardinality maximal matching in a \(k \)-hypergraph.

2. (15 pt) In the Facility Location problem we have \(m \) facilities and \(n \) clients. The cost of opening the \(i \)th facility is \(f(i) \geq 0 \), \(1 \leq i \leq m \). If facility \(i \) is open, it can service client \(j \) at the cost \(c(i, j) \geq 0 \). The objective is to service all the clients at minimum total cost.

Formally, a solution is a subset \(S \subseteq \{1, \ldots, m\} \) of facilities and a mapping \(\mu : \{1, 2, \ldots, n\} \rightarrow S \) of clients to facilities in \(S \). The cost of a solution is \(\sum_{i \in S} f(i) + \sum_{j=1}^{n} c(\mu(j), j) \).

(a) (4 pt) Show that when \(c(i, j) \in \{0, \infty\} \) for all \(1 \leq i \leq m \) and \(1 \leq j \leq n \) the problem is equivalent to Set Cover. Formally, in this case, any instance \(I \) of Facility Location can be transformed to an instance \(I' \) of Set Cover, such that a solution for \(I \) of finite cost induces a feasible solution for \(I' \) of the same cost and vice versa. You may assume that the instance \(I \) always has a solution of finite cost.

Use the following definition for Set Cover. The input is a universe \(U \) along with \(m \) subsets \(S = \{S_1, S_2, \ldots, S_m\} \), where \(S_i \subseteq U \) for \(i = 1, 2, \ldots, m \). Each subset \(S_i \) is associated with a cost \(c_i \geq 0 \). A feasible solution for Set Cover is a subset \(T \subseteq S \) such that \(\cup_{S_i \in T} S_i = U \). The cost of the solution \(T \) is \(\sum_{S_i \in T} c_i \).
Consider the following algorithm for Facility Location:

Find a facility \(i \) and a subset of clients \(S \) that minimize the ratio \(\frac{f(i) + \sum_{j \in S} c(i, j)}{|S|} \).

Open facility \(i \) and use it to service the clients in \(S \). Omit the subset \(S \) of clients from the input (but not facility \(i \)). Continue similarly until all clients are serviced.

(b) (4 pt) Show that the algorithm achieves a ratio of \(O(\log n) \) to the minimum cost.

(c) (7 pt) Show that the algorithm can be implemented in polynomial time.

Question 2 (25 pt)

In this question we consider the problem of Bin Packing in Pairs. It is a variant of the Bin Packing problem taught in class with the following modification. There are bins of capacities \(B_1 \) and \(B_2 \). The objective is to pack the items in a minimal number of pairs of bins, where each pair consists of one bin of capacity \(B_1 \) and one bin of capacity \(B_2 \).

Formally, the input consists of a set of \(n \) items \(I = \{1, 2, \ldots, n\} \), each item \(i \in I \) is associated with a size \(s_i > 0 \). The input includes also two bin capacities \(B_1 \geq B_2 > 0 \), such that \(B_1 \geq s_i \) for all \(i \in I \). A solution is a partition of \(I \) into 2\(m \) sets \(U_1, \ldots, U_m \) and \(V_1, \ldots, V_m \) such that for any \(1 \leq j \leq m \) it holds that \(\sum_{i \in U_j} s_i \leq B_1 \) and \(\sum_{i \in V_j} s_i \leq B_2 \). The cost of the solution is \(m \), the number of pairs of bins used for the packing.

1. (6 pt) Find constants \(c_1, c_2 \geq 0 \), and an algorithm \(A_\varepsilon \) for any \(0 < \varepsilon < 1/2 \), such that
 - \(A_\varepsilon \) is polynomial for any fixed \(\varepsilon \).
 - For any input of Bin Packing in Pairs in which \(B_2 \leq \varepsilon B_1 \), if the optimal solution has the cost \(m \) then \(A_\varepsilon \) returns a solution of cost at most \(m(1 + c_1 \varepsilon) + c_2 \).

2. (16 pt) Find constants \(d_1, d_2 \geq 0 \), and an algorithm \(A_\varepsilon \) for any \(0 < \varepsilon < 1/2 \), such that
 - \(A_\varepsilon \) is polynomial for any fixed \(\varepsilon \).
 - For any input of Bin Packing in Pairs in which \(B_2 > \varepsilon B_1 \), if the optimal solution has the cost \(m \) then \(A_\varepsilon \) returns a solution of cost at most \(m(1 + d_1 \varepsilon) + d_2 \).

Hint: Try to divide the items into large and small, as in the APTAS for Bin Packing.

3. (3 pt) Give an APTAS for Bin Packing in Pairs.

Question 3 (25 pt)

In the Multidimensional Knapsack problem we are given a \(d \)-dimensional knapsack, for some \(d \geq 2 \), having capacity \(b_i \) in the \(i \)th dimension, for \(1 \leq i \leq d \). Also, there is a set of items \(I = \{1, \ldots, n\} \). The size of item \(j \) in dimension \(i \) is \(s_{ij} > 0 \), \(1 \leq j \leq n \), \(1 \leq i \leq d \). The profit from packing item \(j \) is \(p_j > 0 \). A solution is a subset of items \(A \subseteq I \), and the profit of \(A \) is \(P(A) = \sum_{j \in A} p_j \). A solution \(A \) is feasible if \(\sum_{i \in A} s_{ij} \leq b_i \) for all \(1 \leq i \leq d \). We assume below that \(d \) is a fixed constant. Consider the following algorithm for \(d \)-dimensional Knapsack.

Let \(\varepsilon > 0 \) and \(h = \min\{n, \lceil d(1 + \varepsilon)/\varepsilon \rceil\} \). Given a selected subset of items \(S \subseteq I \), the objective of the \(S \)-problem is to find a feasible packing of items in the knapsack which maximizes the profit, subject to the following constraints:

(i) All items in \(S \) are packed.
(ii) Among the items in \(I \setminus S \) only items \(j \) with profit \(p_j \leq \min_{\ell \in S} p_\ell \) can be added to the solution. Denote this set of items by \(\text{Good}(S) \).

Given the selected subset of items \(S \), consider \(LP(S) \) to be a linear programming relaxation of the \(S \)-problem. Let \(x_j \) be an indicator for the selection of item \(j \in I \) for the solution. In the linear programming relaxation \(LP(S) \), \(0 \leq x_j \leq 1 \). Let \(x^B = (x_1^B, \ldots, x_n^B) \) be a basic solution for \(LP(S) \).

The Algorithm: For any \(S \subseteq I \) such that \(|S| \leq h \), solve optimally \(LP(S) \) and round down \(x^B \).

Choose the solution which maximizes the profit.

1. (6 pt) Formulate the linear program \(LP(S) \).
2. Denote by \(x^I_j \) the integer variable obtained after rounding the basic variable \(x^B_j \). Let \(F \) be the subset of items \(j \) for which \(x^B_j \) is fractional, i.e., \(x^I_j < x^B_j \).
 (a) (8 pt) Show that \(|F| \leq d \).
 (b) (2 pt) Show that if \(|S| = h \) then for all \(j \in F \) it holds that \(p_j \leq \frac{1}{h} \sum_{\ell \in S} p_\ell \).
3. Let \(OPT \) be a subset of items packed in an optimal solution. In this part you will show that the algorithm achieves a ratio of \(\frac{1}{1 + \varepsilon} \) to the optimal profit, by proving the next claims.
 (a) (2 pt) If \(|OPT| \leq h \) then the algorithm outputs an optimal solution.
 (b) (3 pt) If \(|OPT| > h \), there exists a subset of \(h \) items \(S^*_h \), \(|S^*_h| \leq h \), such that the rounded solution for \(LP(S^*_h) \) satisfies

\[
P(OPT) \leq \sum_{j=1}^{n} p_j x^I_j + \delta,
\]

where \(\delta = \frac{d}{h} \sum_{\ell \in S^*_h} p_\ell \).

(c) (4 pt) Show that this implies the approximation ratio of \(\frac{1}{1 + \varepsilon} \) for the algorithm.

Question 4 (25 pt)

Let \(G = (V, E) \) be a connected undirected graph and \(T_1, T_2, \ldots, T_t \subseteq V \). Let \(w : E \rightarrow \mathbb{R}_+ \) be a non-negative weight function over the edges. A generalized Steiner forest is a subset \(E' \subseteq E \), such that for every \(u, v \in T_i \) (1 \(\leq i \leq t \)) there is a path in \(E' \) connecting \(u \) and \(v \). In the GENERALIZED STEINER FOREST problem the objective is to find a generalized Steiner forest of minimum weight.

1. (12 pt) Let \(T = \bigcup_{i=1}^{t} T_i \). Assume \(|T_i| \geq 2 \) for any \(1 \leq i \leq t \) and consider \(w' : E \rightarrow \mathbb{R} \) defined as follows. For an edge \((u, v) \), \(w'(u, v) = |\{u, v\} \cap T| \). Show that any minimal generalized Steiner forest of \(G \) is a 2-approximation with respect to the weight function \(w' \).

 Note: a generalized Steiner forest \(E' \) of \(G \) is minimal if there is no \(F \subset E' \) which is also a generalized Steiner forest of \(G \).

2. (13 pt) Suggest a 2-approximation algorithm for the Generalized Steiner Forest problem using the Local Ratio technique.
You may use the following construction in your answer.

Given a graph $G = (V, E)$, a weight function $w : E \to \mathbb{R}_+$ and an edge $(u, v) \in E$ we define the contraction of G, w over the edge (u, v) as the graph $G' = (V', E')$ with a weight function $w' : E' \to \mathbb{R}_+$ along with three functions $f : V \to V'$, $\phi : E' \to E$ and $\phi' : E \setminus \{(u, v)\} \to E'$, defined as follows:

- $V' = V \setminus \{u, v\} \cup \{v^*\}$, where $v^* \notin V$ is a new vertex.
- $f(z) = z$ for $z \in V \setminus \{u, v\}$ and $f(u) = f(v) = v^*$.
- $E' = \{(f(x), f(y)) | (x, y) \in E, f(x) \neq f(y)\}$.
- $\phi'(x, y) = (f(x), f(y))$ for any $(x, y) \in E \setminus \{(u, v)\}$.
- $\phi(e') = \text{argmin}_{e | \phi'(e) = e'} w(e)$ for any $e' \in E$. If the minimum is attained with multiple edges pick one arbitrarily.
- $w'(e') = w(\phi(e'))$ for any $e' \in E'$.

Define $\forall F \subseteq E : w(F) = \sum_{e \in F} w(e), \forall F' \subseteq E' : w'(F') = \sum_{e' \in F'} w'(e'), \forall F \subseteq E \setminus \{(u, v)\} : \phi'(F) = \{\phi'(e) | e \in F\}, \forall F' \subseteq E' : \phi(F') = \{\phi(e') | e' \in F\}$.

The following properties hold with respect to the above contraction:

(P1) For any $F' \subseteq E'$, it holds that $w(\phi(F')) \leq w'(F')$.

(P2) For any $F \subseteq E \setminus \{(u, v)\}$, it holds that $w'(\phi'(F)) \leq w(F)$.

(P3) Let $F' \subseteq E'$. For any $x, y \in V$, if there is a path in F' connecting $f(x)$ and $f(y)$ then there is a path in $\phi(F') \cup \{(u, v)\}$ connecting x and y.

(P4) Let $F \subseteq E \setminus \{(u, v)\}$. For any $x, y \in V$, if there is a path in $F \cup \{(u, v)\}$ connecting x and y then there is a path in $\phi'(F)$ connecting $f(x)$ and $f(y)$.