Approximation Algorithms (236521) - HW1

Submission deadline: 26.11.18 (Monday)

Guidelines:

• The homework should be submitted individually.

• You are required to provide complete and formal proofs of your claims.

• The homework should be submitted to Ariel Kulik’s mailbox (on the 5th floor of Taub building).

1. Design a 2-approximation algorithm for the problem of finding a minimum cardinality maximal matching in an undirected graph.

2. In the knapsack problem we are given a set of \(n \) elements \(I \), where each element \(i \in I \) is associated with a non-negative integral weight \(w_i \) and a non-negative integral profit \(p_i \). We are also given a budget \(B \in \mathbb{N} \). The objective is to find a subset of elements \(S \subseteq I \) such that \(\sum_{i \in S} w_i \leq B \), and \(\sum_{i \in S} p_i \) is maximal.

Let \(k > 0 \) be some fixed integer. Consider Algorithm 1:

Algorithm 1: Knapsack

1. Set \(R = \emptyset \).
2. Sort the elements in \(I \) by their profit to weight ratio. That is, we obtain \(I = \{e_1, e_2, \ldots, e_n\} \) such that for every \(i < j \) we have \(\frac{p_i}{w_i} \geq \frac{p_j}{w_j} \).
3. for every \(S \subseteq I, |S| \leq k, \sum_{i \in S} w_i \leq B \) do
 4. Set \(T = S \)
 5. for \(i = 1 \) to \(n \) do
 6. Let \(T' = T \cup \{e_i\} \). If \(\sum_{j \in T'} w_j \leq B \) set \(T = T' \)
 7. end for
 8. If \(\sum_{i \in T} p_i > \sum_{i \in R} p_i \) then set \(R = T \)
5. end for
10. Return \(R \)

(a) Show that the algorithm is polynomial in the input size.

(b) Show that the algorithm is \((1 - \frac{1}{k+1}) \)-approximation for knapsack.

Hint: Consider the iteration in which \(S \) is the set of \(k \) elements with highest profits in an optimal solution.

3. In the minimum-cost Steiner tree problem we are given an undirected, complete graph \(G = (V, E) \) with nonnegative costs \(c_{ij} \) for all edges \((i, j) \in E \). The set of vertices is partitioned into terminals \(R \) and non-terminals \(V \setminus R \). The goal is to find a minimum-cost tree containing all the terminals.
(a) Suppose initially that the edge costs obey the triangle inequality, i.e., $c_{ij} \leq c_{ik} + c_{kj}$ for all $i, j, k \in V$. Consider computing a minimum spanning tree of $G[R]$ ($G[R]$ is the subgraph of G induced by the terminals R). Prove that this gives a 2-approximation algorithm for the minimum-cost Steiner tree problem.

(b) Now suppose that edge costs do not obey the triangle inequality, and that the input graph G is connected but not necessarily complete. Let \tilde{c}_{ij} be the distance of the shortest path from i to j in G. Consider running the algorithm above on the complete graph \tilde{G} on V with edge costs \tilde{c}_{ij}, to obtain a tree \tilde{T}. To compute a tree T in G, for each edge (i, j) in \tilde{T}, we add to T all edges in a shortest path from i to j in G. If the resulting graph T has a cycle, arbitrarily remove a single edge from the cycle, and repeat the process until T is acyclic. Show that this is still a 2-approximation algorithm for the minimum-cost Steiner tree problem on the original (incomplete) input graph G.

4. In class we saw an H_n-factor greedy algorithm for the minimum weighted set cover problem.

(a) Give a tight example that admits $w(I) = H_n \cdot \text{OPT} - \epsilon$ for all $\epsilon > 0$ (I is the cover that the greedy algorithm shown in class outputs).

(b) Consider the following variant of (unweighted) set cover: Given a set of elements E, m subsets of the elements $S_1, S_2, \ldots, S_m \subseteq E$ (such that $\bigcup S_j = E$) and an integer $k \leq m$, select k subsets such that their union has the maximum cardinality.

Give a $(1 - \frac{1}{e})$-approximation algorithm for this problem.

(c) Consider the following problem: Given a set of elements E, and m subsets of the elements $S_1, S_2, \ldots, S_m \subseteq E$ each with weight $w_j \geq 0$, find a subset $S \subseteq E$, $|S| = k$ such that we maximize the total weight of the subsets S_j such that $S \cap S_j \neq \emptyset$. Give a $(1 - \frac{1}{e})$-approximation algorithm for this problem.

\tilde{G} is sometimes called the metric completion of G.