For schedules s and s' over the same set of transactions the following statements hold.

(i) $s \approx s' \implies \text{op}(s) = \text{op}(s')$ and $\text{RF}(s) = \text{RF}(s')$

(ii) $s \approx s'$ iff $D(s) = D(s')$

2. Design an algorithm for scheduling (pseudo-code scheduler) such that transactions comply with 2PL rules (comply with 2PL rules) whenever a transaction's read or write set is consistent (potential read (RS) and potential write (WS) sets) with the current transaction's read or write set (potential read (RS) and potential write (WS) sets).

3. Consider the following condition for removing nodes (and edges) from the serialization graph in the SGT protocol: Remove t_i when it is finished and none of the transactions that were active at the commit or abort time of t_i are active anymore. Show that this condition, albeit seemingly natural, would lead to incorrect behavior of the SGT protocol.

4. Show that the condition that the SGT protocol is consistent (consistent (CSR)) with the set of transactions that have been committed (VSR) in the system.

5. Consider the following condition for removing nodes (and edges) from the serialization graph in the SGT protocol: Remove t_i when it is finished and none of the transactions that were active at the commit or abort time of t_i are active anymore. Show that this condition, albeit seemingly natural, would lead to incorrect behavior of the SGT protocol.

6. Design a protocol for implementing the SGT protocol in a distributed system.