1. **(Code-based PRG construction)** Let $\mathbb{F} = \mathbb{F}_2$. Consider the following instance of the OWF candidate f_{code}. The input consists of a $2k \times k$ generating matrix $C \in \mathbb{F}^{2k \times k}$, a message vector $x \in \mathbb{F}^k$, and a binary vector χ of length $\lfloor k/4 \rfloor$ representing a noise vector $e \in \mathbb{F}^{2k}$ of Hamming weight $\lfloor k/20 \rfloor$. The output is $(C, C x + e(\chi))$, where e is a (deterministic) polynomial-time computable function mapping a random χ to a nearly uniform noise vector of weight $\lfloor k/20 \rfloor$.

 (a) On which input lengths n_k is f_{code} defined? Does it expand inputs of length n_k?

 (b) Suppose there is an efficient A that, on inputs of length n_k, distinguishes between the output of f_{code} on a random input and a random string of the same length with advantage $\varepsilon(n_k)$. Prove that there is an efficient A' that given $f_{\text{code}}(C, x, \chi)$ and r predicts (x, r) with probability $1/2 + \varepsilon(n_k)/2$ (where the probability is over a uniform choice of C, x, χ, r).

 Hint: Consider A' that picks a random $s \in \mathbb{F}^{2k}$ and runs A on an input of the form (C', y) where $C' = C + s \cdot r^T$.

 (c) Prove that if f_{code} is one-way on inputs of length n_k, then its output on these inputs is pseudo-random.

2. **(Extending the domain and range of PRFs)** Let $F : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be a pseudorandom function with key length $s(n)$, where $s(n)$ is a polynomial. Recall that the first argument of $F(k, x)$ is a key and the second is the input.

 (a) Formally define a notion of a PRF with output length $m(n)$, and show how to use F to construct such a PRF for every polynomial $m(n)$. Prove that your construction satisfies your definition.

 (b) Let $0 < \epsilon < 1$ be a constant. Suppose $H = (G_H, E_H)$ is a family of universal hash functions with output length $\ell(n) \geq n'$ and a uniformly random key of length $s'(n)$. Then $F'(k, k', x) = F(k, h_k(x))$ is a PRF with key length $s'(n) + s(\ell(n))$, where k is a random key for F and k' is a random key for H.

 (c) Conclude that a PRF with key length $O(n)$ can be obtained by using a single invocation of F (and no additional use of cryptography).

3. **(Constant-rate string commitment)** Recall that Naor’s bit-commitment scheme requires the sender to communicate $O(n)$ bits to the receiver. Consider the following efficient generalization, which supports commitment to an n-bit string with the same asymptotic communication:

 - Given n, the receiver R sends to S a random string $r \in \{0,1\}^{4n}$.
 - To commit to $m \in \{0,1\}^n$, the sender S views m as an element in the finite field $\mathbb{F} = GF(2^n)$, views F as a subfield of $\mathbb{F}' = GF(2^{4n})$, picks a random seed $s \in \{0,1\}^n$ for a PRG $G : \{0,1\}^n \to \{0,1\}^{4n}$, and views $G(s)$ and r as elements of \mathbb{F}'. The commitment sent to R is $c = G(s) + mr$.

 (a) Formally define a notion of an interactive, statistically binding string commitment with message length $\ell(n)$.

 (b) Prove that the above protocol satisfies the definition for $\ell(n) = n$.

1
4. **(Rate-1 public-key encryption)** Suppose there exist a PKE and a PRG. Prove the existence of a PKE with message length \(t(n) = n \) in which the ciphertext length is \(n + o(n) \).

5. **(From an exam)** Prove or disprove succinctly each of the following statements. If needed, you may assume that a one-way function exists or make any other (clearly stated) standard assumption among those mentioned in class.

 (a) If \(F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n \) is a pseudorandom function with key length \(n \) and output length \(n \), then \(F'(x) = F(x,x) \) is a OWF.

 (b) If \(F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n \) is a pseudorandom function with key length \(n \) and output length \(n \), then \(F'(x) = (F(x,0), F(x,1)) \) is a OWF, where the first argument of \(F \) is the key and the second is the input.

 (c) If \(\text{Gen, Enc, Dec} \) is a PKE for 1-bit messages, then the following algorithms \(\text{Com, Ver} \) define a bit-commitment scheme: \(\text{Com}(1^n, b) \) lets \((pk, sk) \leftarrow \text{Gen}(1^n) \), \(c \leftarrow \text{Enc}(pk, b) \) and outputs \(\text{com, dec} \) where \(\text{com} = (pk,c) \) and \(\text{dec} = sk \); \(\text{Ver}(1^n, b, \text{com, dec}) \) accepts \(b \) if and only if \(\text{Dec}(sk,c) = b \).

 (d) There exists a PKE \(\text{Gen, Enc, Dec} \) for 1-bit messages where \(\text{Enc} \) is deterministic.

 (e) If \(\text{Gen, Eval} \) is a collision-resistant hash function then so is \(\text{Gen, Eval'} \) where \(\text{Eval'} \) is defined by \(\text{Eval'}(k,x) = \text{Eval}(k, \text{Eval}(k,x)) \).