1. (Code-based PRG construction) Let $\mathbb{F} = \mathbb{F}_2$. Consider the following instance of the OWF candidate f_{code}. The input consists of a $2k \times k$ generating matrix $C \in \mathbb{F}^{2k \times k}$, a message vector $x \in \mathbb{F}^k$, and a binary vector χ of length $\lfloor k/4 \rfloor$ representing a noise vector $e \in \mathbb{F}^{2k}$ of Hamming weight $\lfloor k/20 \rfloor$. The output is $(C, Cx + e(\chi))$, where e is a (deterministic) polynomial-time computable function mapping a random χ to a nearly uniform noise vector of weight $\lfloor k/20 \rfloor$.

(a) On which input lengths n_k is f_{code} defined? Does it expand inputs of length n_k?

(b) Suppose there is an efficient A that, on inputs of length n_k, distinguishes between the output of f_{code} on a random input and a random string of the same length with advantage $\varepsilon(n_k)$. Prove that there is an efficient A' that given $f_{\text{code}}(C, x, \chi)$ and r predicts (x, r) with probability $1/2 + \varepsilon(n_k)/2$ (where the probability is over a uniform choice of C, x, χ, r).

Hint: Consider A' that picks a random $s \in \mathbb{F}^{2k}$ and runs A on an input of the form (C', y) where $C' = C + s \cdot r^T$.

(c) Prove that if f_{code} is one-way on inputs of length n_k, then its output on these inputs is pseudo-random.

2. (Universal hash functions and one-time MAC) Let $H = (G, E)$, where G is a PPT algorithm and E is a polynomial-time algorithm. We say that H is a family of universal hash functions with output length $\ell(n)$ if the following properties hold for all n:

- If k is a possible output of $G(1^n)$ then for any $x \in \{0, 1\}^n$, the output of $E(k, x)$ is of length $\ell(n)$. We denote $E(k, x)$ by $h_k(x)$.
- For any distinct $x, x' \in \{0, 1\}^n$, we have $\Pr_k[h_k(x) = h_k(x')] \leq 2^{-\ell(n)}$, where $k \leftarrow G(1^n)$.

Prove the following claims.

(a) For any polynomial-time computable $\ell(n)$ there is a family of universal hash functions with output length $\ell(n)$.

Guideline: Use a family of the form $h_{a,b} = ax + b$ where a, b are taken from the finite field \mathbb{F}_{2^n}.

(b) Define a one-time MAC (i.e., a MAC whose security game only allow A to get a single signature), and show how to use a universal hash function.

3. (Extending the domain and range of PRFs) Let $F : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ be a pseudorandom function with key length $s(n)$, where $s(n)$ is a polynomial. Recall that the first argument of $F(k, x)$ is a key and the second is the input.

(a) Formally define a notion of a PRF with output length $m(n)$, and show how to use F to construct such a PRF for every polynomial $m(n)$. Prove that your construction satisfies your definition.

(b) Let $0 < \epsilon < 1$ be a constant. Suppose $H = (G_H, E_H)$ is a family of universal hash functions with output length $\ell(n) \geq n' \epsilon$ and a uniformly random key of length $s'(n)$. Then $F'(k, k') = F(k, h_k(x))$ is a PRF with key length $s'(n) + s(\ell(n))$, where k is a random key for F and k' is a random key for H.

Due: Sunday 28/2/19
(c) Conclude that a PRF with key length \(O(n) \) can be obtained by using a single invocation of \(F \) (and no additional use of cryptography).

4. **(Constant-rate string commitment)** Recall that Naor’s bit-commitment scheme requires the sender to communicate \(O(n) \) bits to the receiver. Consider the following efficient generalization, which supports commitment to an \(n \)-bit string with the same asymptotic communication:

- Given \(n \), the receiver \(R \) sends to \(S \) a random string \(r \in \{0,1\}^{4n} \).
- To commit to \(m \in \{0,1\}^n \), the sender \(S \) views \(m \) as an element in the finite field \(\mathbb{F} = GF(2^n) \), views \(\mathbb{F} \) as a subfield of \(\mathbb{F}' = GF(2^{4n}) \), picks a random seed \(s \in \{0,1\}^n \) for a PRG \(G : \{0,1\}^n \to \{0,1\}^{4n} \), and views \(G(s) \) and \(r \) as elements of \(\mathbb{F}' \). The commitment sent to \(R \) is \(c = G(s) + mr \).

(a) Formally define a notion of an interactive, statistically binding string commitment with message length \(\ell(n) \).

(b) Prove that the above protocol satisfies the definition for \(\ell(n) = n \).

5. **(Rate-1 public-key encryption)** Suppose there exist a PKE and a PRG. Prove the existence of a PKE with message length \(\ell(n) = n \) in which the ciphertext length is \(n + o(n) \).

6. **(CRHF implies OWF)** If there is a collision-resistant hash function \((\text{Gen}, \text{Eval})\) then there is a one-way function.

7. **(From an exam)** Prove or disprove succinctly each of the following statements. If needed, you may assume that a one-way function exists or make any other (clearly stated) standard assumption among those mentioned in class.

(a) If \(F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n \) is a pseudorandom function with key length \(n \) and output length \(n \), then \(F'(x) = F(x, x) \) is a OWF.

(b) If \(F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n \) is a pseudorandom function with key length \(n \) and output length \(n \), then \(F'(x) = (F(x, 0), F(x, 1)) \) is a OWF, where the first argument of \(F \) is the key and the second is the input.

(c) If \((\text{Gen}, \text{Enc}, \text{Dec})\) is a PKE for 1-bit messages, then the following algorithms \((\text{Com}, \text{Ver})\) define a bit-commitment scheme: \(\text{Com}(1^n, b) \) lets \((pk, sk) \leftarrow \text{Gen}(1^n)\), \(c \leftarrow \text{Enc}(pk, b) \) and outputs \((\text{com}, \text{dec})\) where \(\text{com} = (pk, c) \) and \(\text{dec} = sk \); \(\text{Ver}(1^n, b, \text{com}, \text{dec}) \) accepts \(b \) if and only if \(\text{Dec}(sk, c) = b \).

(d) There exists a PKE \((\text{Gen}, \text{Enc}, \text{Dec})\) for 1-bit messages where \(\text{Enc} \) is deterministic.