1. [40 pts] (Definitions) Give a precise definition for each of the following notions.
 (a) Negligible function $\epsilon(n)$
 (b) One-way function $f : \{0,1\}^* \rightarrow \{0,1\}^*$
 (c) Pseudorandom generator $G : \{0,1\}^* \rightarrow \{0,1\}^*$
 (d) Public-key encryption scheme (Gen, Enc, Dec) with message length $\ell(n)$
 (e) Non-interactive bit-commitment scheme (Com, Ver).

2. [60 pts] Prove or disprove succinctly each of the following statements. If needed, you may assume that a one-way function exists or make any other (clearly stated) standard assumption.
 (a) If f is a OWF then $f'(x) = f(x) \circ f(x)$ (where \circ denotes string concatenation) is also a OWF.
 (b) If G is a PRG then $G'(x) = G(x) \circ G(x)$ is also a PRG.
 (c) If P=NP then there is no PRG (please give a self-contained answer, without relying on any claim made in the class).
 (d) If f is a OWF, then the function $P : \{0,1\}^* \rightarrow \{0,1\}$ which outputs the XOR of all of its input bits is a hardcore predicate for f.
 (e) If $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a pseudorandom function with key length n and output length n, then $F'(x) = F(x, x)$ is a OWF.
 (f) If (Gen, Enc, Dec) is a PKE for 1-bit messages, then the following algorithms (Com, Ver) define a bit-commitment scheme: $\text{Com}(1^n, b)$ lets $(pk, sk) \leftarrow \text{Gen}(1^n)$, $c \leftarrow Enc(pk, b)$ and outputs (com, dec) where $com = (pk, c)$ and $dec = sk$; $\text{Ver}(1^n, b, com, dec)$ accepts b if and only if $Dec(sk, c) = b$.