Public Key Cryptography 1

See:

Trapdoor Problems

Basing the solution on the complexity of problems, which are easy to solve for the legal users, but are very difficult to the eavesdroppers.

Such problems are called *trapdoor problems*.

They allow to exchange secure common keys using insecure channels!
Diffie-Hellman Key Exchange Protocol

Based on number theory assumptions.

The basic idea:

1. It is easy to calculate

 \[a^x \mod q \]

 for any \(a, x \) and \(q \). (The algorithm is shown in Slide 273).

2. There is no efficient algorithm which computes \(x \) given \(a, q \), and

 \[a^x \mod q. \]

This is the discrete logarithm (DLOG) problem.
Diffie-Hellman Key Exchange Protocol (cont.)

Notations:

- Denote x in binary representation as
 \[x = x_{n-1}x_{n-2} \ldots x_1x_0, \text{ where } x = \sum_{i=0}^{n-1} x_i 2^i. \]

- Let q be a large prime number.

- All the multiplications from now on are modulo q.
Diffie-Hellman Key Exchange Protocol (cont.)

Preparations:

System parameters common to all users:

- Let q be a large prime number ($q > 2^{400}$).
- Let a an integer $1 < a < q$.

Public and private keys: Each user U:

- chooses a random value X_U ($1 < X_U < q$) and keeps it secret.
- publishes $Y_U = a^{X_U} \mod q$.
Diffie-Hellman Key Exchange Protocol (cont.)

The key exchange:

Two users A,B who wish to have a common key, known only to them:

- A calculates \(K = (Y_B)^{X_A} \mod q \).
- B calculates \(K = (Y_A)^{X_B} \mod q \).

A and B result with the same common key \(K \):

\[
(Y_B)^{X_A} \equiv (a^{X_B})^{X_A} \equiv a^{X_B \cdot X_A} \equiv a^{X_A \cdot X_B} \equiv (a^{X_A})^{X_B} \equiv (Y_A)^{X_B} \quad (\mod q).
\]
Diffie-Hellman Key Exchange Protocol (cont.)

Security:

1. The secret keys are secure: if one can compute the secret key X_A of A from $Y_A = a^{X_A} \mod q$, he solved the DLOG problem, and we assume it is difficult.

2. Can somebody compute the common key of A and B from their published keys (without computing the secret keys)? The problem of computing $a^{X_A X_B} \mod q$ from a, $a^{X_A} \mod q$ and $a^{X_B} \mod q$ is assumed to be as difficult as DLOG.
Solution: Each user chooses two keys:

- A **public key** (K_E) which he publishes. This key is publicly known. The public key is used for encryption.

- A **secret key** (K_D) which he keeps secret (also called **private key**). The secret key is used for decryption.
Public Key Cryptography (cont.)

Everybody (B) who knows A’s public key can encrypt messages to A by

\[C = E_{K_E}(M) \]

but only A can decrypt it by

\[M = D_{K_D}(C). \]

Even B cannot decrypt messages he encrypted under A’s public key (unless he keeps records of the messages he encrypted).
Public Key Cryptography (cont.)

Required properties:

1. the encryption and decryption functions E, D are publicly known and easy to compute.

2. It is possible to generate pairs of keys K_E and K_D which satisfy $\forall M : D_{K_D}(E_{K_E}(M)) = M$.

3. Without the knowledge of K_D, it is difficult to decrypt C, given only the public key K_E (even though encryption is easy).

Result: It is difficult to compute K_D from K_E (even if the attacker have many encrypted messages).
The Key Generation

It is difficult to calculate K_D from K_E. In many cases it is also difficult to calculate K_E from K_D.

We need a trapdoor function E_{K_E}: easy to calculate, but difficult to invert.

We should use an efficient function $G(X)$ which takes a random X and generates both keys simultaneously.
The Key Generation (cont.)

Usage: Each user U generates a pair of random keys

$$(K_E, K_D) = G(\text{random } X),$$

and publishes K_E (in a public file). K_D is kept secret.

When another user A wishes to send a message M to U, he requests U’s public key K_E (from the public file), computes

$$C = E_{K_E}(M),$$

and sends C to U. U decrypts by

$$M = D_{K_D}(C).$$
The Key Generation (cont.)

Properties:

1. Everybody can send messages to U, without the need to distribute a common secret key in advance.

2. Only U can decrypt.

3. The center (maintaining the public file) cannot decrypt (if he is only trusted to send U’s real key to A).

4. There is no need to set common secret keys in advance. A and B can communicate securely after they request each other's key from the center. The communication with the center does not have to be encrypted.
The Key Generation (cont.)

5. Two users who have never met, can communicate securely even without a trusted center. However, they cannot authenticate each other without a trusted center.

6. The center can generate certificates for the users: he signs the users identity together with their public key. The users can then receive the certificates directly from the receivers, rather than asking the center for the public keys of the receivers. Then, they verify with the center’s well-known public key.
Shortened Notation

After the user U chooses his pair of keys K_E and K_D, and publishes his public key K_E, we denote his encryption function (known to everybody) by

$$E_U(\cdot) = E_{K_E}(\cdot)$$

and his decryption function (whose key is secret) by

$$D_U(\cdot) = D_{K_D}(\cdot).$$

For every user U, E_U can be computed by all the users, but D_U can be computed only by U.
Remark

Remark: Diffie and Hellman did not suggest a good implementation of a public key cryptosystem. Only after they published their paper, several public key cryptosystems were suggested, such as Merkle-Hellman’s knapsack cryptosystem (broken later) and RSA.

They predicted that public key cryptosystems will be based on the following problems (as was the case later in the listed systems)

1. Knapsack (an NP-complete problem): such as Merkle-Hellman.

2. Factoring: RSA, etc.

3. Discrete logarithm: ElGamal, DSS, etc.
Public Key Signatures

The encryption function E_U is 1-1. If it is also onto, $E_U : \mathcal{M} \rightarrow \mathcal{M}$, it can be used for signatures as well.

U signs a message M by

$$S = D_U(H(M)),$$

where H is a collision free hash function.

Everybody can verify the originality of the signature S by checking whether

$$E_U(S) \neq H(M).$$
Public Key Signatures (cont.)

Claim: $E_U(D_U(X)) = X$ for every X.

Proof: Let X be some value. From the definition, $D_U(E_U(Y)) = Y$ for every Y, and in particular for $Y = D_U(X)$.

Therefore, $D_U(E_U(D_U(X))) = D_U(E_U(Y)) = Y = D_U(X)$.

Since E_U is 1-1, then D_U is 1-1, and $E_U(D_U(X)) = X$. QED

Secret signatures: If U wishes to keep the signature (sent to B) secret, he sends $E_B(S) = E_B(D_U(H(M)))$. B will decrypt and get S, and then will be able to verify it as before.