Principles of Managing Uncertain Data

Lecture 7: Inconsistent Databases
Table of Contents

1 Introduction

2 Inconsistent Databases

3 Repairs

4 Consistent Query Answering

5 Complexity Aspects
Various applications rely on inconsistent data:
 ▪ Multiple, autonomous sources of data
 ▪ Each may be consistent, but there may be disagreements across different sources
 ▪ Data with potential errors (e.g., socially-maintained encyclopedias)
 ▪ Imprecise data-generation processes (e.g., text extraction)

In a database context, inconsistency means that we have integrity constraints (phrased over the schema), and these are violated
So, What to Do?

- Manual correction of data
 - Very limited in scale, not always possible
- Heuristic automated cleaning (e.g., if a person has two salaries, take the average)
 - Very common approach
 - Valuable information may be lost
 - Significant errors may be introduced
- **Consistent query answering**
 - Do the best you can without resolving conflicts
 - This lecture
Consistent query answers in inconsistent databases

Authors: Marcelo Arenas, Leopoldo Bertossi, Jan Chomicki

Publication date: 1999/5/1

Conference: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems

Pages: 68-79

Publisher: ACM

Description: In this paper we consider the problem of the logical characterization of the notion of consistent answer in a relational database that may violate given integrity constraints. This notion is captured in terms of the possible repaired versions of the database. A method for computing consistent answers is given and its soundness and completeness (for some classes of constraints and queries) proved. The method is based on an iterative procedure whose termination for several classes of constraints is proved as well.

Total citations: Cited by 864
Consistent Query Answering (CQA)

- Introduced in 1999 by Arenas, Bertossi Chomicki [ABC99]
- Idea: query engine considers all possible ways of “repairing” the data
 - A repair should mimic a legitimate manual cleaning
 - Formal definitions always involve a notion of a “minimal change”
- To answer a query, give the answers that are valid no matter which repair is being used
- Ideally, considering “all possible repairs” is only conceptual, and efficient algorithms answer queries much more efficiently
 - As we shall see, some combinations of queries and constraints allow for efficiency; others do not
Lots of research followed the 1999 paper [ABC99]
Complexity and algorithmic approaches to CQA
Different classes of queries and integrity constraints
Richer/different notions of “repairs”
 - Different update actions
 - Different notions of minimality
 - Tuple preferences to refine the cleaning process
 - Research @Technion
Table of Contents

1. Introduction
2. Inconsistent Databases
3. Repairs
4. Consistent Query Answering
5. Complexity Aspects
A schema S is a pair (\mathcal{R}, Σ), where $\mathcal{R} = \{R_1, \ldots, R_m\}$ is a signature (set of relation schemas) and Σ is a set of logical constraints over \mathcal{R}.
• The framework of repairs does not restrict the kind of integrity constraints that can be used
• But the kind of constraints may have a crucial impact on the form of the repairs, as well as the complexity of CQA
We will focus here on two kinds of integrity constraints:

- **Functional Dependencies (FDs)**
 - Recall: $R : U \to V$, where U and V are sets of attributes of R
 - As a special case, we say that Σ consists of primary-key constraints if Σ associates (at most) one FD to each relation, and that FD is a key constraint

- **Inclusion Dependencies (INDs)**
 - Recall: $R[A_1, \ldots, A_m] \subseteq S[B_1, \ldots, B_m]$ where A_1, \ldots, A_m are distinct attributes of R and B_1, \ldots, B_m are distinct attributes of S
 - In the case of $m = 1$ it is called a referential constraint
Inconsistent Database

Definition (Inconsistent Database)

Let $S = (R, \Sigma)$ be a schema. An *inconsistent database* is a database I over R, such that I may violate Σ.
Running Example

<table>
<thead>
<tr>
<th>Course</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th>Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>DataEng</td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td>Alon</td>
<td>BioInf</td>
</tr>
</tbody>
</table>

Constraints:

- $CT[\text{ta}] \subseteq ST[\text{student}]$
 - This is a referential constraint
- $ST : \text{student} \rightarrow \text{track}$
 - This is an FD and a key constraint
Table of Contents

1. Introduction
2. Inconsistent Databases
3. Repairs
4. Consistent Query Answering
5. Complexity Aspects
Let I and J be two databases over the same signature.

Recall that we view I and J as sets of facts $R(t)$, where R is a relation and t is a tuple of R.

The **symmetric difference** between I and J, denoted $\Delta(I, J)$, is the set of all the facts in J and I that occur in one of the two, but not in both.

Formally, $\Delta(I, J) = (I \cup J) \setminus (I \cap J)$.

Equivalently, $\Delta(I, J) = (I \setminus J) \cup (J \setminus I)$.
Example 1

\[\Delta(I, J) = \{ \text{CT}(\text{AI}, \text{Avner}), \text{ST}(\text{Asma}, \text{BioInf}) \} \]
Example 2

\[\Delta(I, J) = \{ST(Asma, DataEng), ST(Avner, SWEng)\} \]
Partial Order on Databases

- Let I be an inconsistent database
- Let J_1 and J_2 be two databases of the same signature as I
- We say that J_1 is \textit{at least as close to I as J_2}, denoted $J_1 \leq_I J_2$, if $\Delta(I, J_1) \subseteq \Delta(I, J_2)$
- \leq_I is a \textit{partial order}:
 - That is, reflexive, antisymmetric, and transitive

Proof?
Definition (Repair) [ABC99]

Let \(S \) be a schema. Let \(I \) be an inconsistent database over \(S \), and let \(\text{Inst}(S) \) be the set of all the (consistent) databases over \(S \). A repair of \(I \) is a member of \(\text{Inst}(S) \) that is minimal under \(\leq_I \). We denote by \(\text{Repairs}_\Sigma(I) \) the set of all the repairs of \(I \).
Repair Examples

$I:$

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

CT:

<table>
<thead>
<tr>
<th>student</th>
<th>track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>DataEng</td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td>Alon</td>
<td>BioInf</td>
</tr>
</tbody>
</table>

$CT[ta] \subseteq ST[\text{student}]$

$ST : \text{student} \rightarrow \text{track}$
Repair Examples

\[\Delta(I, J) = \{\text{CT}(\text{AI}, \text{Avner}), \text{ST}(\text{Asma}, \text{BioInf})\} \]
Repair Examples

I:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

ST

<table>
<thead>
<tr>
<th>student</th>
<th>track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>DataEng</td>
</tr>
<tr>
<td>Avner</td>
<td>BioInf</td>
</tr>
</tbody>
</table>

\[CT[ta] \subseteq ST[\text{student}] \]

\[ST: \text{student} \rightarrow \text{track} \]

J:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

ST

<table>
<thead>
<tr>
<th>student</th>
<th>track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td>Avner</td>
<td>SWEng</td>
</tr>
</tbody>
</table>

\[\Delta(I, J) = \{ ST(Asma, DataEng), ST(Avner, SWEng) \} \]
Example of a non-Repair

\[\begin{array}{c|c}
\text{course} & \text{ta} \\
\hline
\text{PL} & \text{Ahuva} \\
\text{OS} & \text{Asma} \\
\text{AI} & \text{Avner} \\
\end{array} \quad \begin{array}{c|c|c}
\text{student} & \text{track} \\
\hline
\text{Ahuva} & \text{SWEng} \\
\text{Asma} & \text{DataEng} \\
\text{Asma} & \text{BioInf} \\
\text{Alon} & \text{BioInf} \\
\end{array} \]

\[
\Delta(I, J) = \{ \text{CT}(\text{AI}, \text{Avner}), \text{ST}(\text{Asma}, \text{BioInf}), \text{ST}(\text{Asma}, \text{DataEng}), \text{ST}(\text{Asma}, \text{SWEng}) \}
\]
Subset Repairs

- Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema.
- A constraint $\sigma \in \Sigma$ is **anti-monotone** if its satisfaction is preserved in subsets; formally, for every databases J and J' over \mathcal{R} we have:

 $$ J \models \sigma \text{ and } J' \subseteq J \implies J' \models \sigma $$

- We say that Σ is **anti-monotone** if each of its members is anti-monotone.
 - Hence, if Σ is anti-monotone then its satisfaction is preserved in sub-instances.
Examples of Anti-Monotone Constraints

- Functional dependencies
 - *Why?*

- Denial constraints $\forall x \neg (\varphi(x) \land \psi(x))$
 - *Why?*

- *What about referential constraints $R[A] \subseteq S[B]$?*
Proposition

Let $S = (\mathcal{R}, \Sigma)$ be a schema such that Σ is anti-monotone, and I an inconsistent database over S. Then every repair of I is a subinstance of I; that is, if $J \in \text{Repairs}_\Sigma(I)$ then $J \subseteq I$.
Recall: an *independent set* in a graph is a set of nodes that does not contain any edge.

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of only functional dependencies, and let I be an inconsistent database over S.

A repair can be viewed as a maximal independent set of a graph.

Which graph?

Nodes are the facts of I, edges $\{f, g\}$ whenever f and g violate an FD in Σ.
In the case of more general anti-monotone constraints (e.g., DCs), we use the concept of a *hypergraph* (where an edge is any set of items, not necessarily pairs)

- It is called the *conflict hypergraph*

- What is an independent set of a hypergraph?
Exercise: Counting Repairs 1

- The following signature R has a single relation symbol:

 $\text{Act}(\text{actor}, \text{email}, \text{movie}, \text{role})$

- Suppose that Σ consists of the following FDs:

 $\text{actor} \rightarrow \text{email}$

- Suggest an algorithm for counting the repairs of an inconsistent database I over
Exercise: Counting Repairs 2

- The following signature \mathcal{R} has a single relation symbol:

 $$\text{Act}(actor, email, movie, role)$$

- Suppose that Σ consists of the following FDs:

 $$\text{actor} \rightarrow \text{email}$$
 $$\text{actor} \text{ movie} \rightarrow \text{role}$$

- Suggest an algorithm for counting the repairs of an inconsistent database I over (\mathcal{R}, Σ).
Exercise: Counting Repairs 3

- The following problem is \#P-hard: given a bipartite graph, count the maximal matches.
- Consider the signature \mathcal{R} with the single relation symbol:

$$\text{CEO}(\text{company}, \text{person})$$

- Suggest FDs so that you can translate the problem of counting maximal matches into the problem of counting repairs.
Dichotomy of Repair Counting

Theorem [LK17]

Let $S = (R, \Sigma)$ be a fixed schema such that Σ consists of only FDs.

- If the left sides of the FDs form a *chain* w.r.t. \subseteq (up to equiv.), then the repairs can be counted in polynomial time.
- Otherwise, computing $|\text{Repairs}_\Sigma(I)|$ is #P-complete.
Table of Contents

1 Introduction

2 Inconsistent Databases

3 Repairs

4 Consistent Query Answering

5 Complexity Aspects
Recalling Database Queries

- Let $S = (R, \Sigma)$ be a schema
- Recall that a query Q over S is associated with a heading (A_1, \ldots, A_k), which is a sequence of distinct attributes
- Q maps every database $I \in \text{Inst}(S)$ into a relation $Q(I)$ over the heading of Q
- A query with an empty heading is called Boolean, and we denote $Q(I)$ as either true or false
Definition (Consistent Answers)

Let $S = (R, \Sigma)$ be a schema, Q a query over S, and I an inconsistent database over S. A tuple a is a **consistent answer** if $a \in Q(J)$ for every repair J. We denote by $\text{Consistent}_\Sigma(Q, I)$ the set of all consistent answers. Hence, we have:

$$\text{Consistent}_\Sigma(Q, I) = \bigcap_{J \in \text{Repairs}_\Sigma(I)} Q(J)$$
CQA Examples

- Courses and tracks of their TAs
 - (PL, SWEng)
- All courses
 - PL, OS
More Interesting Example

I:

<table>
<thead>
<tr>
<th>lecturer</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avia</td>
<td>AI</td>
</tr>
<tr>
<td>Avia</td>
<td>DB</td>
</tr>
<tr>
<td>Aharon</td>
<td>DB</td>
</tr>
</tbody>
</table>

LC

- LC: lecturer → course

<table>
<thead>
<tr>
<th>ta</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>AI</td>
</tr>
<tr>
<td>Ahuva</td>
<td>DB</td>
</tr>
<tr>
<td>Asma</td>
<td>DB</td>
</tr>
</tbody>
</table>

TC

- TC: ta → course
- TC: course → ta

Which lecturers have a TA?
In the case of a Boolean query Q, CQA boils down to “is Q true in every repair?”

As usual, Boolean CQs are useful for complexity analysis.
Boolean CQA Example

<table>
<thead>
<tr>
<th>I:</th>
<th>CT</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>course</td>
<td>ta</td>
<td>student</td>
</tr>
<tr>
<td>PL</td>
<td>Ahuva</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
<td>Asma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alon</td>
</tr>
</tbody>
</table>

CT[ta] ⊆ ST[student]

ST: student → track

- Is there any TA from BioInf?
- Can we find at least two tracks with TAs?
The literature of inconsistent databases studies several computational problems:

- Repair Checking
- Consistent Query Answering (CQA)
- Construction of a “good” repair (cleaning)
- Repair counting
- Repair enumeration
Problems Def. (Repair Checking)

Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema. *Repair checking* is the problem of deciding, given an inconsistent database I and a consistent database J, whether J is a repair of I.

In notation: given $I \in \text{Inst}(\mathcal{R})$ and $J \in \text{Inst}(\mathcal{S})$, determine whether $J \in \text{Repairs}_\Sigma(I)$.
Easy Exercise

- Let $S = (R, \Sigma)$ be a schema
- Suppose that both of the following hold:
 - Σ is anti-monotone
 - $J \vDash \Sigma$ can be tested in polynomial time, given a database J over R
- Prove that repair checking is solvable in polynomial time
Example of Intractable Repair Checking

Theorem

Let S be the schema with the relation $R(A, B, C, D)$ and the constraints $R : A \rightarrow B$ and $R[C] \subseteq R[D]$. Then repair checking is coNP-complete over S.

- Proof by reduction from (the complement of) CNF-SAT
- Input of CNF-SAT is a formula $\varphi = c_0 \land \cdots \land c_{m-1}$
 - Each c_i is a disjunction $l_1^i \lor \cdots \lor l_k^i$ of literals
 - A literal is either a variable x (positive) or a negated variable $\neg x$ (negative)
- Example: $\varphi = (x \lor y \lor z) \land (x \lor \neg y \lor w) \land (\neg x \lor \neg z \lor w)$
- Goal: is there any truth assignment that satisfies φ?
Proof (from [CM05])

- $R(A, B, C, D)$ with $R: A \rightarrow B$ and $R[C] \subseteq R[D]$

- Given $\varphi = c_0 \land \cdots \land c_{m-1}$, we construct I and J

- I contains:
 - $R(x, 1, (i + 1) \mod m, i)$ for every clause c_i with the positive literal x
 - $R(x, 0, (i + 1) \mod m, i)$ for every clause c_i with the negative literal $\neg x$

- J is empty
Proof (from [CM05])

\(R(A, B, C, D) \) with \(R : A \rightarrow B \) and \(R[C] \subseteq R[D] \)

Example: \(\varphi = (x \lor y \lor z) \land (x \lor \neg y \lor w) \land (\neg x \lor \neg z \lor w) \)

\[
\begin{array}{cccc}
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
\end{array}
\]
Proof (from [CM05])

\[R(A, B, C, D) \text{ with } R : A \rightarrow B \text{ and } R[C] \subseteq R[D] \]

Example: \[\varphi = (x \lor y \lor z) \land (x \lor \neg y \lor w) \land (\neg x \lor \neg z \lor w) \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Proof (from [CM05])

- Every consistent subset of I is either empty or encodes a satisfying assignment to φ
- Recall: J is not a repair if and only if there exists a repair J' such that $J' \neq J$ and $J' \leq_I J$
- Here, $\Delta(I, J) = I$ since J is empty
- For a repair J' we have $J' \leq_I J$ if and only if $\Delta(I, J') \subseteq \Delta(I, J)$
 - That is, $\Delta(I, J') \subseteq I$
 - That is, $J' \subseteq I$ (i.e., J' is a subset repair)
- Hence, a repair $J' \neq J$ with $J' \leq_I J$ must be a nonempty consistent subset of I
- Hence, if such J' exists (i.e., J is not a repair), then φ is satisfiable
Proof (from [CM05])

- The other direction is easy: if \(\varphi \) is satisfiable, then we can construct a subset repair \(J' \neq J \)
- (Left as an exercise)
Problem Def. (CQA)

Let $S = (R, \Sigma)$ be a schema, and let Q over a query over S. CQA is the problem of deciding, given an inconsistent database I and a tuple a, whether a is a consistent answer.

In notation, given I and a, is $a \in \text{Consistent}_\Sigma(Q, I)$?
Repair Checking vs. CQA

- CQA is motivated; but what about repair checking?
- Repair checking is viewed as an indirect indication of complexity: If we wish to manage inconsistency, the setup should be such that we should at least be able to test whether one database is the repair of another.
- There is also a more formal connection:
 - Suppose that:
 - repairs are of size polynomial in the inconsistent database;
 - query evaluation is in polynomial time.
 - If repair checking is in polynomial time, then CQA is in coNP
 - Why?
Example of a Tractable CQ

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LC</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer</td>
<td>course</td>
</tr>
<tr>
<td></td>
<td>PL</td>
</tr>
<tr>
<td>Keren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DB</td>
</tr>
<tr>
<td>Keren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL</td>
</tr>
<tr>
<td>Eran</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI</td>
</tr>
<tr>
<td>Eran</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OS</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() :\neg LC(x, y), CT(y, z) \]
Example of a Tractable CQ

LC(lecturer, course)	CT(course, ta)
lecture → course | course → ta

Query: Does any course have both a lecturer and a TA?

\[Q() := \text{LC}(x, y), \text{CT}(y, z) \]

- \(Q \) is consistently true if and only if there is a lecturer such that every one of her courses is in CT
- \(\exists x \left(\exists y \text{[LC}(x, y) \right) \land \forall y \text{[LC}(x, y) \rightarrow \exists z \text{[CT}(y, z) \right] \}
- An FO query can be evaluated straightforwardly in polynomial time (recall: data complexity)
Example of an Intractable CQ

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>TC(ta, course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>ta → course</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() :\neg \text{LC}(x, y), \text{TC}(x', y) \]

- We now show that answering \(Q \) is coNP-complete
Proof of Hardness (from [CM05])

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>TC(ta, course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>ta → course</td>
</tr>
</tbody>
</table>

\[Q() := \text{LC}(x, y), \text{TC}(x', y) \]

- Proof by reduction from (the complement of) *non-mixed* CNF-SAT
- Input is a CNF \(\varphi = c_1 \land \cdots \land c_m \) where in each clause \(c_i \) either all literals are positive (positive clause) or all literals are negative (negative clause)
- Example:

\[\varphi = (x \lor y) \land (w \lor z) \land (\neg x \lor \neg y \lor \neg w) \]
Reduction

- Given φ, we build I:
 - $\text{LC}(i, z)$ for each positive c_i containing z
 - $\text{TC}(i, z)$ for each negative c_i containing $\neg z$
Example

\[\varphi = (x \lor y) \land (w \lor z) \land (\neg x \lor \neg y \lor \neg w) \land (\neg x \lor \neg z) \]

<table>
<thead>
<tr>
<th>LC</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer</td>
<td>course</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>w</td>
</tr>
<tr>
<td>2</td>
<td>z</td>
</tr>
<tr>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

\[Q() \vdash \text{LC}(x, y), \text{TC}(x', y) \]
Example

\[\varphi = (x \lor y) \land (w \lor z) \land (\neg x \lor \neg y \lor \neg w) \land (\neg x \lor \neg z) \]

<table>
<thead>
<tr>
<th>(LC)</th>
<th>(TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer</td>
<td>course</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>w</td>
</tr>
<tr>
<td>2</td>
<td>z</td>
</tr>
<tr>
<td>ta</td>
<td>course</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>w</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

\[Q() := LC(x, y), TC(x', y) \]
Another Example of a Tractable CQ

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer \rightarrow course</td>
<td>course \rightarrow ta</td>
</tr>
</tbody>
</table>

Query: Does any course have the same lecturer and TA?

$$Q() :\neg LC(x, y), CT(y, x)$$

Wijsen [Wij10] has proved:

- Q is **not** expressible in FO
- However, Q can be evaluated in polynomial time
- We will see the proof of Kolaitis and Pema [KP12]
Conflict-Join Graph

- $Q() \leftarrow \text{LC}(x,y), \text{CT}(y,x)$
- For an instance I, the \textit{conflict-join} graph of I, denoted $G_{Q,I}$, is the undirected graph with the following properties:
 - The nodes are all the facts $\text{LC}(a,b)$ and $\text{CT}(c,d)$ of I.
 - There is an edge between:
 - every two conflicting facts $\text{LC}(a,b)$ and $\text{LC}(a,b')$
 - every two conflicting facts $\text{CT}(c,d)$ and $\text{CT}(c,d')$
 - every two joinable facts $\text{LC}(a,b)$ and $\text{CT}(b,a)$
Example of a Conflict-Join Graph $\mathcal{G}_{Q,I}$

```
CT(PL, Keren) ---- CT(PL, Eran)
   |                  |
   LC(Keren, PL)     LC(Eran, PL)
   |                  |
   LC(Keren, AI)     LC(Eran, AI)
   |                  |
   LC(Keren, DB)     LC(Eran, DB)
   |                  |
CT(DB, Keren)       CT(AI, Eran)
```
Lemma

Lemma [KP12]

Consider the CQ $Q() :\neg \text{LC}(x, y), \text{CT}(y, x)$ and an inconsistent instance I. Let n be the number of keys (in the two relations) in I. The following are equivalent:

- There exists a repair J of I with $Q(J) = \text{false}$
- $G_{Q,I}$ has an independent set of size n
Example of an Independent Set of $\mathcal{G}_{Q,I}$
Problem?

- Determining whether a graph has an independent set of a given size is **NP-complete**!
 - *So how does the lemma help us?*
- But for some types of graphs, this problem is known to be solvable in polynomial time; for example:
 - Chordal graphs
 - Perfect graphs
 - Graphs with a bounded treewidth
 - **Claw-free** graphs (Minty [Min80])

- A *claw* is the complete bipartite graph $K_{1,3}$
- A graph g is **claw free** if no **induced** subgraph of g is a claw
Can You Find an Induced Claw?

- **CT(PL, Keren)**
 - **LC(Keren, PL)**
 - **LC(Keren, AI)**
 - **LC(Keren, DB)**
 - **CT(DB, Keren)**

- **CT(PL, Eran)**
 - **LC(Eran, PL)**
 - **LC(Eran, AI)**
 - **LC(Eran, DB)**
 - **CT(AI, Eran)**
Is this an Induced Claw?

CT(PL, Keren) —— CT(PL, Eran)

LC(Keren, PL) —— LC(Eran, PL)

LC(Keren, AI) —— LC(Eran, AI)

LC(Keren, DB) —— LC(Eran, DB)

CT(DB, Keren) —— CT(AI, Eran)
Completing the Proof

- Lemma: $\mathcal{G}_{Q,I}$ is claw free.
- Corollary: for $Q() :\neg \text{LC}(\underline{x},y), \text{CT}(\underline{y},x)$ the consistency problem can be solved in polynomial time

End of lecture 7

Inconsistent Databases