Principles of Managing Uncertain Data

Lecture 6: Data Exchange
Table of Contents

1. Introduction
2. Schema Mappings
3. Source/Target Instances
4. Answering Target Queries
5. Finding Universal Solutions
Table of Contents

1. Introduction
2. Schema Mappings
3. Source/Target Instances
4. Answering Target Queries
5. Finding Universal Solutions
Background

- Data exchange: transform data between different applications, each with its own schema
- An old problem (e.g., the EXPRESS system \([SHT^+77]\))
- Revisited and formalized by Fagin et al. \([FKMP03]\) in 2003
 - Test-of-time award in ICDT 2013
- Lots of followups since 2013, including specialized sessions in main database conferences
- Implementation by the Clio project (IBM Almaden + University of Toronto), productized within IBM DB2
- Application to various data models (XML, RDF)
The Clio Project (1)
The Clio Project (2)
Data exchange: semantics and query answering

Authors: Ronald Fagin, Phokion G Kolaitis, Renée J Miller, Lucian Popa
Publication date: 2005/5/25
Journal: Theoretical Computer Science
Volume: 336
Issue: 1
Pages: 89-124
Publisher: Elsevier

Description: Data exchange is the problem of taking data structured under a source schema and creating an instance of a target schema that reflects the source data as accurately as possible. In this paper, we address foundational and algorithmic issues related to the semantics of data exchange and to the query answering problem in the context of data exchange. These issues arise because, given a source instance, there may be many target instances that satisfy the constraints of the data exchange problem.

We give an algebraic specification that selects, among all solutions to the data exchange problem, a special class of solutions that we call universal. We show that a universal solution has no more and no less data than required for data exchange and that it represents the entire space of possible solutions. We then identify fairly general, yet practical, conditions that guarantee the existence of a universal solution and yield ...

Total citations: Cited by 1291
Popular Research Challenges

- How to materialize target data from source data?
- Answering target queries given source data
 - Semantics, complexity
- Manipulating mapping specifications
 - Composition, inversion

The core of these challenges is **missing information**: underspecified logical rules, missing target attributes
Running Example

Source:

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td></td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td></td>
</tr>
</tbody>
</table>

Target:

- No manager manages >1 departments
- Every manager is an employee
Definition (Schema Mapping) [FKMP05]

A schema mapping is a triple (S, T, Σ) where:

- $S = \{S_1, \ldots, S_n\}$ is a source schema
- $T = \{T_1, \ldots, T_m\}$ is a target schema
- S and T have no common relation names
- Σ is a set of logical formulas over $S \cup T$
Example

<table>
<thead>
<tr>
<th>S:</th>
<th>ManagedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>emp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T:</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>emp</td>
<td>dept</td>
</tr>
<tr>
<td></td>
<td>dept</td>
<td>mgr</td>
</tr>
</tbody>
</table>

- If e is managed by m, then e belongs to a department managed by m

Σ:
- Every manager is an employee of her department
- No manager manages more than one department
We consider three types of constraints in Σ

- Source-to-target tuple-generating dependencies
 - st-TGDs
- Target tuple-generating dependencies
 - t-TGDs
- Target equality-generating dependencies
 - t-EGDs
Let \((S, T, \Sigma)\) be a schema mapping.

Recall: a TGD is an expression of the form

\[
\forall x [\varphi(x) \rightarrow \exists y \psi(x, y)]
\]

where \(\varphi(x)\) and \(\psi(x, y)\) are conjunctions of atomic formulas

\(R(\tau_1, \ldots, \tau_k)\)

In an st-TGD, \(\varphi(x)\) is over \(S\) (the source schema), and
\(\psi(x, y)\) is over \(T\) (the target schema).

In a t-TGD, both \(\varphi(x)\) and \(\psi(x, y)\) are over \(T\).
Example

\[
\begin{align*}
S: & \quad \text{ManagedBy} \\
 & \quad \begin{array}{c|c}
 \text{emp} & \text{mgr} \\
 \hline
 \end{array} \\
T: & \quad \begin{array}{c|c|c}
 \text{Emp} & \text{Dept} \\
 \hline
 \text{emp} & \text{dept} & \text{dept} & \text{mgr} \\
 \hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
\Sigma: & \quad \text{st-TGD: ManagedBy}(e,m) \rightarrow \text{Emp}(e,d), \text{Dept}(d,m) \\
 & \quad \text{t-TGD: Dept}(d,m) \rightarrow \text{Emp}(m,d)
\end{align*}
\]
Let \((S, T, \Sigma)\) be a schema mapping

Recall that an EGD is an expression of the form

\[\forall x [\varphi(x) \rightarrow y_1 = y_2] \]

- \(\varphi(x)\) is a conjunction of atomic formulas
- \(y_1\) and \(y_2\) are variables in \(x\)

In a \(t\)-EGD, \(\varphi(x)\) is over the target schema

Example: no manager manages more than one department

\[\text{Dept}(d, m), \text{Dept}(d', m) \rightarrow d = d' \]
Complete Example (Schema Mapping)

S:

<table>
<thead>
<tr>
<th>ManagedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
</tr>
<tr>
<td>mgr</td>
</tr>
</tbody>
</table>

T:

<table>
<thead>
<tr>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>dept</td>
</tr>
<tr>
<td>dept</td>
<td>mgr</td>
</tr>
</tbody>
</table>

st-TGD: ManagedBy(e, m) → Emp(e, d), Dept(d, m)

Σ: t-TGD: Dept(d, m) → Emp(m, d)

t-EGD: Dept(d, m), Dept(d', m) → d = d'
Let \((S, T, \Sigma)\) be a schema mapping

A \textit{source instance} is an instance over \(S\)

A \textit{target instance} is a \(v\)-instance \(J\) over \(T\); hence, \(J\) may have \textit{labeled nulls} (or \textit{variables}) instead of values

Formally:

- We have a set \(\text{Const}\) of \textit{constants} and a set \(\text{Var}\) of \textit{variables} (labeled nulls)
- A source instance has only values from \(\text{Const}\)
- A target instance may have values from both \(\text{Const}\) and \(\text{Var}\)
For the sake of constraint satisfaction, we identify a target instance as an ordinary instance, interpreting each labeled null as a unique value.

This is important, since we can now define what it means for a target instance (with nulls) to satisfy a TGD/EGD.
Definition (Solution)

Let \(\mathcal{M} = (S, T, \Sigma) \) be a schema mapping, and let \(I \) be a source instance. A *solution* is a target instance \(J \), such that \(I \) and \(J \) jointly satisfy \(\Sigma \). We denote by \(Sol_{\mathcal{M}}(I) \) the set of all solutions.
Example

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

- $\text{ManagedBy}(e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m)$
- $\text{Dept}(d, m) \rightarrow \text{Emp}(m, d)$
- $\text{Dept}(d, m), \text{Dept}(d', m) \rightarrow d = d'$
Example

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m)\) → \(\text{Emp}(e, d), \text{Dept}(d, m)\)
- Dept\((d, m)\) → \(\text{Emp}(m, d)\)
- Dept\((d, m), \text{Dept}(d', m)\) → \(d = d'\)

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>R&D</td>
</tr>
<tr>
<td>Chen</td>
<td>R&D</td>
</tr>
<tr>
<td>Ella</td>
<td>Finance</td>
</tr>
<tr>
<td>Ahuva</td>
<td>R&D</td>
</tr>
<tr>
<td>Doron</td>
<td>Finance</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Finance</td>
<td>Doron</td>
</tr>
</tbody>
</table>
Example

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m)\) \rightarrow Emp\((e, d)\), Dept\((d, m)\)
- Dept\((d, m)\) \rightarrow Emp\((m, d)\)
- Dept\((d, m)\), Dept\((d', m)\) \rightarrow \(d = d'\)

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>⊥₁</td>
</tr>
<tr>
<td>Chen</td>
<td>⊥₁</td>
</tr>
<tr>
<td>Ella</td>
<td>Finance</td>
</tr>
<tr>
<td>Ahuva</td>
<td>⊥₁</td>
</tr>
<tr>
<td>Doron</td>
<td>Finance</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥₁</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Finance</td>
<td>Doron</td>
</tr>
</tbody>
</table>
Example

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m)\)
- Dept\((d, m) \rightarrow \text{Emp}(m, d)\)
- Dept\((d, m), \text{Dept}(d', m) \rightarrow d = d'\)

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>(\perp_1)</td>
</tr>
<tr>
<td>Chen</td>
<td>(\perp_1)</td>
</tr>
<tr>
<td>Ella</td>
<td>(\perp_2)</td>
</tr>
<tr>
<td>Ahuva</td>
<td>(\perp_1)</td>
</tr>
<tr>
<td>Doron</td>
<td>(\perp_2)</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\perp_1)</td>
<td>Ahuva</td>
</tr>
<tr>
<td>(\perp_2)</td>
<td>Doron</td>
</tr>
</tbody>
</table>
Example

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m) \rightarrow Emp(e, d), Dept(d, m) \)
- Dept\((d, m) \rightarrow Emp(m, d) \)
- Dept\((d, m), Dept(d', m) \rightarrow d = d' \)

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>⊥₁</td>
</tr>
<tr>
<td>Chen</td>
<td>⊥₁</td>
</tr>
<tr>
<td>Ella</td>
<td>⊥₁</td>
</tr>
<tr>
<td>Ahuva</td>
<td>⊥₁</td>
</tr>
<tr>
<td>Doron</td>
<td>⊥₁</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥₁</td>
<td>Ahuva</td>
</tr>
<tr>
<td>⊥₁</td>
<td>Doron</td>
</tr>
</tbody>
</table>
Homomorphism

- Let J and K be two target instances
- Let μ be a mapping from the values of J to those of K
- For a fact $f = R(a_1, \ldots, a_k)$, we denote the fact $R(\mu(a_1), \ldots, \mu(a_k))$ by $\mu(f)$
- μ is a **homomorphism** from J to K if
 1. $\mu(c) = c$ for every $c \in \text{Const}$; and
 2. $\mu(f) \in K$ for every $f \in J$.
- That is, a homomorphism maps every constant to itself, and every J-fact to a K-fact
Let J and K be two target instances.

We denote by $J \rightarrow K$ the fact that there exists a homomorphism from J to K.

Note: many homomorphisms from J to K may exist.

$J \rightarrow K$ means that K contains a homomorphic image of J, that is, a set of facts that could be obtained from J by an assignment (of constants or variables) to the variables.
Example

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>\bot_1</td>
</tr>
<tr>
<td>Barak</td>
<td>\bot_2</td>
</tr>
<tr>
<td>Chen</td>
<td>Eng</td>
</tr>
<tr>
<td>\bot_4</td>
<td>\bot_5</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot_1</td>
<td>\bot_4</td>
</tr>
<tr>
<td>\bot_2</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Eng</td>
<td>Fady</td>
</tr>
<tr>
<td>\bot_6</td>
<td>Barak</td>
</tr>
</tbody>
</table>

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>\bot_1</td>
</tr>
<tr>
<td>Barak</td>
<td>\bot_1</td>
</tr>
<tr>
<td>Chen</td>
<td>Eng</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot_1</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Eng</td>
<td>Fady</td>
</tr>
<tr>
<td>Finance</td>
<td>Barak</td>
</tr>
<tr>
<td>\bot_2</td>
<td>Doron</td>
</tr>
</tbody>
</table>

\[\mu : \]

\[\begin{align*}
\bot_1 & \mapsto \bot_1 \\
\bot_2 & \mapsto \bot_1 \\
\bot_3 & \mapsto \text{Eng} \\
\bot_4 & \mapsto \text{Ahuva} \\
\bot_5 & \mapsto \bot_1 \\
\bot_6 & \mapsto \text{Finance} \\
\end{align*} \]

Ahuva \mapsto Ahuva

...
Properties of Homomorphism

- The relationship \rightarrow is reflexive
 - $\forall J \in J$,

- The relationship \rightarrow is transitive
 - For all J, K, L,

- Why?

- The relationship \rightarrow is not symmetric
 - Example?
Isomorphism

- Two target instances J and K are *isomorphic* if each one can be obtained from the other by (uniquely) renaming variables.
- Isomorphism is an *equivalence* relation (i.e., reflexive, symmetric and transitive).
- Clearly, if J and K are isomorphic, then $J \rightarrow K$ and $K \rightarrow J$.
 - But not vice versa.
Definition (Universal Solution)

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping, and let I be a source instance. A *universal solution* is a solution J such that $J \rightarrow K$ for all solutions K.
Example of a Universal Solution

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m) → Emp(m, d)
- Dept(d, m), Dept(d', m) → d = d'

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>\bot_1</td>
</tr>
<tr>
<td>Chen</td>
<td>\bot_1</td>
</tr>
<tr>
<td>Ella</td>
<td>\bot_2</td>
</tr>
<tr>
<td>Ahuva</td>
<td>\bot_1</td>
</tr>
<tr>
<td>Doron</td>
<td>\bot_2</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot_1</td>
<td>Ahuva</td>
</tr>
<tr>
<td>\bot_2</td>
<td>Doron</td>
</tr>
<tr>
<td>\bot_2</td>
<td>\bot_3</td>
</tr>
</tbody>
</table>

Later: how to prove that this is indeed a universal solution?
Why Universal Solutions?

- If J is a universal solution, then every possible solution contains a homomorphic image of J
- Intuitively, it means that J does not contain facts that are not justified (in some strong sense)
- Universal solutions are important for several reasons:
 - They are “legitimate” solutions in the sense that whatever they contain can be found (through homomorphism) in every possible solution
 - Under fairly general assumptions, we can actually materialize (i.e., produce) a universal solution
 - They can be used for answering positive RA queries (later)
As we have seen, universal solutions are not necessarily isomorphic to each other.
Moreover, different universal solutions can have different sizes.
They are, though, *homomorphically equivalent* to one another.
That is, there are homomorphisms in both directions.
Let J be a v-instance

- An **endomorphism** on J is a homomorphism from J to itself
- The endomorphism is **proper** if it maps J to a proper subset of J
- The **core** of J, denoted $\text{Core}(J)$, is a subinstance J' of J such that:
 - There is a homomorphism (endomorphism) from J to J'
 - There is no proper endomorphism on J'
- Why “the” core? Next...
Fundamental Theorem

Theorem [HN92]

The following hold:

- Every \(v \)-instance has a core.
- All cores of a \(v \)-instance are isomorphic.
- If \(J \rightarrow K \) and \(K \rightarrow J \), then \(\text{Core}(J) \cong \text{Core}(K) \).
Example 1

\[
\begin{array}{c|c}
T & \Rightarrow & T \\
\hline
a_1 & a_2 \\
\hline
\bot_1 & a \\
a & a \\
a & \bot_2 \\
\bot_1 & \bot_2 \\
\bot_2 & \bot_3 \\
\end{array}
\]

\[
\begin{array}{c|c}
\bot_1 & \bot_1 \\
\bot_2 & a \\
\bot_3 & \bot_2 \\
\end{array}
\]
Example 2

<table>
<thead>
<tr>
<th>(T)</th>
<th>(\Rightarrow)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(\bot_1 \mapsto a)</td>
</tr>
<tr>
<td>(\bot_1)</td>
<td>(a)</td>
<td>(\bot_2 \mapsto a)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(\bot_3 \mapsto a)</td>
</tr>
<tr>
<td>(a)</td>
<td>(\bot_2)</td>
<td></td>
</tr>
<tr>
<td>(\bot_1)</td>
<td>(\bot_2)</td>
<td></td>
</tr>
<tr>
<td>(\bot_2)</td>
<td>(\bot_3)</td>
<td></td>
</tr>
</tbody>
</table>
Let \((S, T, \Sigma)\) be a schema mapping, and let \(I\) be a source instance

Suppose that \(J\) is a solution and \(\mu\) is an endomorphism over \(J\)

Is \(\mu(J)\) necessarily a solution?

No!
Example 1 Revisited

\[R(x) \rightarrow T(x, x) \]
\[T(x, y), T(y, y), T(y, z) \rightarrow T(x, z) \]
\[I = \{ R(a) \} \]

\[
\begin{array}{ccc}
T & \Rightarrow & T \\
\hline
a_1 & a_2 \\
\perp_1 & a \\
a & a \\
a & \perp_2 \\
\perp_1 & \perp_2 \\
\perp_2 & \perp_3 \\
a & \perp_2 \\
\end{array}
\]

\[
\begin{array}{ccc}
T & \Rightarrow & T \\
\hline
a_1 & a_2 \\
\perp_1 & a \\
a & a \\
a & \perp_2 \\
\perp_1 & \perp_2 \\
\perp_2 & \perp_2 \\
a & \perp_2 \\
\end{array}
\]
Theorem [FKP05]

Let \((S, T, \Sigma)\) be a schema mapping, let \(I\) be a source instance, and let \(J\) be target instance. If \(J\) is a solution, then \(\text{Core}(J)\) is a solution.
We now get a good candidate for a solution: the core of a universal solution

Simply called a core solution

We know:

There is a universal solution if and only if there is a core solution

All core solutions are isomorphic

Core solutions are universal solutions

why?

Core solutions are the smallest universal solutions

why?
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Schema Mappings</td>
</tr>
<tr>
<td>3</td>
<td>Source/Target Instances</td>
</tr>
<tr>
<td>4</td>
<td>Answering Target Queries</td>
</tr>
<tr>
<td>5</td>
<td>Finding Universal Solutions</td>
</tr>
</tbody>
</table>
Certain Answers

- We evaluate a query Q over a target instance J by treating each labeled null as a unique value.
- Clearly, different solutions $J \in Sol_M(I)$ may have different results $Q(J)$.
Definition (Certain Answers)

Let \mathcal{M} be a schema mapping, I a source instance, and Q be a target query. We denote by $\text{Certain}_{Q,\mathcal{M}}(I)$ the relation that consists of all the tuples that occur in $Q(J)$ for all solutions J; that is:

$$\text{Certain}_{Q,\mathcal{M}}(I) \overset{\text{def}}{=} \bigcap \{Q(J) \mid J \in \text{Sol}_\mathcal{M}(I)\}$$

A tuple in $\text{Certain}_{Q,\mathcal{M}}(I)$ is called a *certain answer*.

References

- Certain Answers
- Answering UCQs
- Finding Universal Solutions
- Source/Target Instances
- Schema Mappings
- Introduction
Recall that a conjunctive query (CQ) is a query of the form

\[Q(x) :\neg \exists y [\varphi_1(x, y) \land \cdots \land \varphi_k(x, y)] \]

where each \(\varphi_k(x, y) \) is an atomic query

A union of conjunctive queries (UCQ) is a query of the form

\[Q(x) :\neg \psi_1(x) \lor \cdots \lor \psi_k(x) \]

where each \(Q(x) :\neg \psi_i(x) \) is a CQ

If \(Q \) is a target query and \(J \) is a target instance, then \(Q(J) \downarrow \) denotes the relation obtained from \(Q(J) \) by removing every tuple with one or more nulls.
Theorem (FKMP'03)

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping, Q a target UCQ, and I a source instance. If J is a universal solution, then

$$Q(J) \downarrow = \text{Certain}_{Q,\mathcal{M}}(I).$$
Table of Contents

1. Introduction
2. Schema Mappings
3. Source/Target Instances
4. Answering Target Queries
5. Finding Universal Solutions
The Chase

- The *chase* is a standard technique in reasoning about databases with integrity constraints [BV84]

- Idea:
 - Start with the original database instance
 - Repeatedly, look for a violation of a constraint, and fix by revising the instance
 - ... until no violations remain (or the violation cannot be fixed)
Chase Steps for Data Exchange

- Start with $J = \emptyset$
- TGD violation: $\varphi(x) \rightarrow \exists y \psi(x, y)$
 - **Violation**: an assignment α to x, such that $\varphi(\alpha(x))$ holds, but there is no b such that $\psi(\alpha(x), b)$
 - **Fix**: add the facts of $\psi(\alpha(x), y)$, where each existential variable in y is replaced with a fresh null
- EGD violation: $\varphi(x) \rightarrow y_1 = y_2$
 - **Violation**: An assignment α to x, such that $\alpha(\varphi(x))$ holds, but $\alpha(y_1) \neq \alpha(y_2)$
 - **Fix**: 3 cases
 1. $\alpha(y_1)$ is a labeled null: replace every $\alpha(y_1)$ with $\alpha(y_2)$ in J
 2. $\alpha(y_2)$ is a labeled null: replace every $\alpha(y_2)$ with $\alpha(y_1)$ in J
 3. Both $\alpha(y_1)$ and $\alpha(y_2)$ are constants: terminate with **failure**
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td></td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td></td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) \rightarrow Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) \rightarrow $d = d'$
- Dept(d, m) \rightarrow Emp(m, d)
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td></td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td></td>
</tr>
</tbody>
</table>

- ManagedBy \((e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m)\)
- Dept \((d, m), \text{Dept}(d', m) \rightarrow d = d'\)
- Dept \((d, m) \rightarrow \text{Emp}(m, d)\)
Chase Example

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) → d = d'
- Dept(d, m) → Emp(m, d)
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th></th>
<th>Emp</th>
<th></th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>emp</td>
<td></td>
<td>dept</td>
</tr>
<tr>
<td>emp</td>
<td></td>
<td>Barak</td>
<td></td>
<td>Barak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chen</td>
<td></td>
<td>Chen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ella</td>
<td></td>
<td>▼₂</td>
</tr>
</tbody>
</table>

- ManagedBy$(e, m) \rightarrow Emp(e, d), Dept(d, m)$
- Dept$(d, m), Dept(d', m) \rightarrow d = d'$
- Dept$(d, m) \rightarrow Emp(m, d)$
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>dept</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Barak</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Chen</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>Ella</td>
</tr>
</tbody>
</table>

- **ManagedBy**\((e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m)\)
- **Dept**\((d, m), \text{Dept}(d', m) \rightarrow d = d'\)
- **Dept**\((d, m) \rightarrow \text{Emp}(m, d)\)
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>emp</td>
<td>dept</td>
</tr>
<tr>
<td>mgr</td>
<td>dept</td>
<td>mgr</td>
</tr>
<tr>
<td>Barak</td>
<td>Barak</td>
<td>(\perp_1)</td>
</tr>
<tr>
<td>Chen</td>
<td>Chen</td>
<td>(\perp_2)</td>
</tr>
<tr>
<td>Ella</td>
<td>Ella</td>
<td>(\perp_3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\text{ManagedBy}(e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m)\)
- \(\text{Dept}(d, m), \text{Dept}(d', m) \rightarrow d = d'\)
- \(\text{Dept}(d, m) \rightarrow \text{Emp}(m, d)\)

\[\begin{align*}
\text{Chase Example} \\
\text{ManagedBy} & \quad \text{Emp} & \quad \text{Dept} \\
\text{emp} & | \text{emp} & | \text{dept} & \quad | \text{dept} & | \text{mgr} \\
\text{mgr} & | & | & | \quad & | \\
\text{Barak} & | \text{Ahuva} & | \text{Barak} & | \text{Ahuva} & | \text{Ahuva} \\
\text{Chen} & | \text{Ahuva} & | \text{Chen} & | \text{Ahuva} & | \text{Ahuva} \\
\text{Ella} & | \text{Doron} & | \text{Ella} & | \text{Doron} & | \text{Doron} \\
\end{align*}\]

\[\begin{align*}
\text{ManagedBy}(e, m) & \rightarrow \text{Emp}(e, d), \text{Dept}(d, m) \\
\text{Dept}(d, m), \text{Dept}(d', m) & \rightarrow d = d' \\
\text{Dept}(d, m) & \rightarrow \text{Emp}(m, d) \\
\end{align*}\]
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>dept</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>↓₁</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>↓₂</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>↓₃</td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m)\) \rightarrow Emp\((e, d)\), Dept\((d, m)\)
- Dept\((d, m)\), Dept\((d', m)\) \rightarrow \(d = d'\)
- Dept\((d, m)\) \rightarrow Emp\((m, d)\)
Chase Example

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>1</td>
</tr>
<tr>
<td>Chen</td>
<td>1</td>
</tr>
<tr>
<td>Ella</td>
<td>3</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ahuva</td>
</tr>
<tr>
<td>1</td>
<td>Ahuva</td>
</tr>
<tr>
<td>3</td>
<td>Doron</td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m)\)
- Dept\((d, m), \text{Dept}(d', m) \rightarrow d = d'\)
- Dept\((d, m) \rightarrow \text{Emp}(m, d)\)
Chase Example

- \(\text{ManagedBy}(e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m) \)
- \(\text{Dept}(d, m), \text{Dept}(d', m) \rightarrow d = d' \)
- \(\text{Dept}(d, m) \rightarrow \text{Emp}(m, d) \)
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>dept</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>1</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>1</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m)\) \rightarrow Emp\((e, d)\), Dept\((d, m)\)
- Dept\((d, m)\), Dept\((d', m)\) \rightarrow $d = d'$
- Dept\((d, m)\) \rightarrow Emp\((m, d)\)
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>dept</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Barak</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Chen</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>Ella</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ahuva</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doron</td>
</tr>
</tbody>
</table>

- ManagedBy\((e, m)\) \(\rightarrow\) Emp\((e, d)\), Dept\((d, m)\)
- Dept\((d, m)\), Dept\((d', m)\) \(\rightarrow\) \(d = d'\)
- Dept\((d, m)\) \(\rightarrow\) Emp\((m, d)\)
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>dept</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>(\bot_1)</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>(\bot_1)</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>(\bot_3)</td>
</tr>
</tbody>
</table>

- \(\text{ManagedBy}(e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m) \)
- \(\text{Dept}(d, m), \text{Dept}(d', m) \rightarrow d = d' \)
- \(\text{Dept}(d, m) \rightarrow \text{Emp}(m, d) \)
Chase Failure and Termination

There are three kinds of chase executions:

1. Termination with *success*
2. Termination with *failure*
3. Non-termination

 - *How can that be?*
 - $\text{Person}(x) \rightarrow \text{ChildOf}(x, y)$ \hspace{0.5cm} \text{ChildOf}(x, y) \rightarrow \text{ChildOf}(y, z)$
Theorem [FKMP05]

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping and I a source instance.

- If the chase terminates successfully, then the result is a universal solution.
- If the chase terminates with failure, then there is no solution at all.

The result of a successful chase is called a *canonical* universal solution.
We would like to be able to test whether a schema mapping \((S, T, \Sigma)\) is such that the chase is guaranteed to terminate. Unfortunately, this is provably impossible.
Theorem [KPT06, DNR08]

The following problems are undecidable. Given a schema mapping (S, T, Σ) and a source instance I:

1. Is there any solution?
2. Is there any universal solution?
3. Is there any terminating chase?
4. Is every chase terminating?
Weak acyclicity is a property of a schema mapping that guarantees termination of the chase (and further consequent goodness properties).
Let (S, T, Σ) be a schema mapping

- A position is an expression of the form $R.A$, where R is a relation name and A is an attribute of R
- The dependency graph of Σ is the directed graph G_{Σ} defined as follows:
 - The nodes are the positions
 - For each t-TGD $\varphi(x) \rightarrow \exists y \psi(x, y)$, position p at $\varphi(x)$, position q at $\psi(x, y)$ there is an edge $p \rightarrow q$ if:
 - p and q have the same variable (ordinary edge)
 - q has an existential variable (special edge)
Example

- ManagedBy\((e, m) \rightarrow \text{Emp}(e, d), \text{Dept}(d, m)\)
- Dept\((d, m) \rightarrow \text{Emp}(m, d)\)
- Emp\((e, d) \rightarrow \text{Dept}(d, m)\)

\[
\begin{align*}
\text{Dept}.\text{dept} & \leftrightarrow \text{Emp}.\text{dept} \\
\text{Dept}.\text{mgr} & \rightarrow \text{Emp}.\text{emp}
\end{align*}
\]
Weak Acyclicity

- Σ is **weakly acyclic** if G_Σ does not have any cycle that goes through a special edge
- Note: weak acyclicity is a property of the t-TGDs (independent of the st-TGDs and t-EGDs)
- Weak acyclicity can be tested in polynomial time in Σ

Why?
Example: Weakly Acyclic

- ManagedBy\((e, m) \rightarrow Emp(e, d), Dept(d, m)\)
- Dept\((d, m) \rightarrow Emp(m, d)\)

\[
\begin{align*}
\text{Dept.dept} & \rightarrow \text{Emp.dept} \\
\text{Dept.mgr} & \rightarrow \text{Emp.emp}
\end{align*}
\]
Example: Not Weakly Acyclic

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m) → Emp(m, d)
- Emp(e, d) → Dept(d, m)

Dept.dept ↔ Emp.dept

Dept.mgr → Emp.emp
Weak Acyclicity and Chase Termination

Theorem [FKMP05]

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping. Assume that Σ is weakly acyclic. Given a source instance I, the chase terminates in polynomial time in $|I|$.

(The degree of the polynomial is determined by \mathcal{M}.)
Theorem [FKMP05]

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping and I a source instance. Assume that Σ is weakly acyclic. Then the following are equivalent:

1. There is a solution.
2. There is a universal solution.
3. The chase terminates successfully.
We now have an algorithm for computing the certain answers, given a source instance I for a schema mapping (S, T, Σ):

```
chase $I$ and $\Sigma$
if the chase fails then
   abort(“no solution”)
else
   let $J$ be the resulting solution
   return $Q(J)\downarrow$
```

Of course, the algorithm assumes that the chase terminates.

If Σ is weakly acyclic, we get a polynomial-time algorithm.
Computing a Core Solution

- Can we construct a core solution in polynomial time if Σ is weakly acyclic?
- The straightforward way is:
 1. Compute a universal solution J via chase
 2. Compute the core of J
- Does it return the correct result?
- Is it a polynomial-time strategy?
- What is the complexity of finding the core of a v-instance?
We show that it is NP-hard to compute the core of a v-instance.

Reduction from 3-colorability: given a graph g, is there a legal node coloring by 3 colors?

Denote $g = (V, E)$ where $V = \{v_1, \ldots, v_n\}$.

Construct a v-instance D with a single relation R_E that consists of only labeled nulls.

- $R(\bot_i, \bot_j)$ for all $i < j$ such that $\{v_i, v_j\}$ is an edge.
- $R(\bot_x, \bot_y)$ for every $x \neq y$ in $\{r, g, b\}$.

Denote this part of D as D_Δ.

Reduction from 3-Colorability (1)
Reduction from 3-Colorability (2)

- Claim: the core of D is D_Δ if and only if g is 3-colorable
- Proof steps:
 - If $\text{Core}(D) = D_\Delta$ then the endomorphism is a legal 3-coloring
 - A 3-coloring defines an endomorphism to D_Δ
 - $\text{Core}(D_\Delta) = D_\Delta$
- This establishes NP-hardness
- Nevertheless, D is not necessarily the result of chasing with a weakly acyclic Σ!
- Gottlob and Nash [GN08] proved that, if J is the result of such a chase, then $\text{Core}(D)$ can, in fact, be computed in polynomial time.
Theorem [GN08]

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping. Assume that Σ is weakly acyclic. Given a source instance I, a core solution can be found in polynomial time, if any solution exists.
References I

