Data exchange: transform data between different applications, each with its own schema

- An old problem (e.g., the EXPRESS system [SHT’77])
- Revisited and formalized by Fagin et al. [FKMP03] in 2003
 - Test-of-time award in ICDT 2013
- Lots of followups since 2013, including specialized sessions in main database conferences
- Implementation by the Clio project (IBM Almaden + University of Toronto), productized within IBM DB2
- Application to various data models (XML, RDF)
Introduction

Schema Mappings

Source/Target Instances

Answering Target Queries

Finding Universal Solutions

References

Background

Academic Impact

Popular Research Challenges

- How to materialize target data from source data?
- Answering target queries given source data
 - Semantics, complexity
 - Manipulating mapping specifications
 - Composition, inversion

The core of these challenges is missing information:
- underspecified logical rules, missing target attributes

Running Example

<table>
<thead>
<tr>
<th>Source: ManagedBy</th>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td></td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td></td>
<td>Doron</td>
</tr>
</tbody>
</table>

Target:

<table>
<thead>
<tr>
<th>Emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No manager manages >1 departments
- Every manager is an employee

Table of Contents

- Introduction
- Schema Mappings
- Source/Target Instances
- Answering Target Queries
- Finding Universal Solutions

Example

Definition (Schema Mapping) [FKMP05]

A *schema mapping* is a triple \((S, T, \Sigma)\) where:

- \(S = \{S_1, \ldots, S_n\}\) is a *source schema*
- \(T = \{T_1, \ldots, T_m\}\) is a *target schema*
- \(S\) and \(T\) have no common relation names
- \(\Sigma\) is a set of logical formulas over \(S \cup T\)

\[S: \text{ManagedBy} \]

\[T: \text{Emp} \quad \text{Dept} \]

- If \(e\) is managed by \(m\), then \(e\) belongs to a department managed by \(m\)
- Every manager is an employee of her department
- No manager manages more than one department
We consider three types of constraints in \(\Sigma \):

- Source-to-target tuple-generating dependencies (st-TGDs)
- Target tuple-generating dependencies (t-TGDs)
- Target equality-generating dependencies (t-EGDs)

Let \((S, T, \Sigma)\) be a schema mapping.

Recall: a TGD is an expression of the form

\[
\forall x[\varphi(x) \rightarrow \exists y[y(x, y)]]
\]

where \(\varphi(x)\) and \(y(x, y)\) are conjunctions of atomic formulas \(R(t_1, \ldots, t_k)\).

In an st-TGD, \(\varphi(x)\) is over \(S\) (the source schema), and \(y(x, y)\) is over \(T\) (the target schema).

In a t-TGD, both \(\varphi(x)\) and \(y(x, y)\) are over \(T\).

Example:

<table>
<thead>
<tr>
<th>S:</th>
<th>ManagedBy</th>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>T:</td>
<td>Emp</td>
<td>emp</td>
<td>dept</td>
</tr>
<tr>
<td>(\Sigma): st-TGD: ManagedBy(e, m) \rightarrow Emp(e, d), Dept(d, m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma): t-TGD: Dept(d, m) \rightarrow Emp(m, d)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: no manager manages more than one department.

<table>
<thead>
<tr>
<th>T:</th>
<th>Dept</th>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma): t-EGD: Dept(d, m), Dept(d', m) \rightarrow d = d'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete Example (Schema Mapping):

<table>
<thead>
<tr>
<th>S:</th>
<th>ManagedBy</th>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>T:</td>
<td>Emp</td>
<td>emp</td>
<td>dept</td>
</tr>
<tr>
<td>(\Sigma): st-TGD: ManagedBy(e, m) \rightarrow Emp(e, d), Dept(d, m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma): t-TGD: Dept(d, m) \rightarrow Emp(m, d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma): t-EGD: Dept(d, m), Dept(d', m) \rightarrow d = d'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Let \((S, T, \Sigma)\) be a schema mapping.

A source instance is an instance over \(S\).

A target instance is a \(v\)-instance \(J\) over \(T\); hence, \(J\) may have labeled nulls (or variables) instead of values.

Formally:

- We have a set \(\text{Const}\) of constants and a set \(\text{Var}\) of variables (labeled nulls).
- A source instance has only values from \(\text{Const}\).
- A target instance may have values from both \(\text{Const}\) and \(\text{Var}\).

For the sake of constraint satisfaction, we identify a target instance as an ordinary instance, interpreting each labeled null as a unique value.

This is important, since we can now define what it means for a target instance (with nulls) to satisfy a TGD/EGD.

Definition (Solution)

Let \(M = (S, T, \Sigma)\) be a schema mapping, and let \(I\) be a source instance. A solution is a target instance \(J\), such that \(I\) and \(J\) jointly satisfy \(\Sigma\). We denote by \(\text{Sol}_M(J)\) the set of all solutions.

Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Doron</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Doron</td>
</tr>
<tr>
<td>Ella</td>
<td>Ahuva</td>
<td>Doron</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Doron</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Doron</td>
</tr>
<tr>
<td>Ella</td>
<td>Ahuva</td>
<td>Doron</td>
</tr>
</tbody>
</table>

\[
\text{ManagedBy}(c, m) = \text{Emp}(c, d), \text{Dept}(d, m) \\
\text{Dept}(d, m) = \text{Emp}(m, d) \\
\text{Dept}(d, m), \text{Dept}(d', m) = d = d'
\]

Example

<table>
<thead>
<tr>
<th>Emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>R&D</td>
</tr>
<tr>
<td>Chen</td>
<td>R&D</td>
</tr>
<tr>
<td>Ella</td>
<td>Finance</td>
</tr>
<tr>
<td>Ahuva</td>
<td>R&D</td>
</tr>
<tr>
<td>Doron</td>
<td>Finance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dept</th>
<th>emp</th>
<th>dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>1</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>1</td>
<td>Finance</td>
</tr>
<tr>
<td>Ella</td>
<td>1</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ahuva</td>
<td>1</td>
<td>Doron</td>
</tr>
<tr>
<td>Doron</td>
<td>1</td>
<td>Finance</td>
</tr>
</tbody>
</table>
Example

ManagedBy

<table>
<thead>
<tr>
<th>emp</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
</tr>
</tbody>
</table>

Homomorphism

- Let \(J \) and \(K \) be two target instances
- Let \(\mu \) be a mapping from the values of \(J \) to those of \(K \)
- For a fact \(f = R(a_1, \ldots, a_k) \), we denote the fact \(R(\mu(a_1), \ldots, \mu(a_k)) \) by \(\mu(f) \)
- \(\mu \) is a homomorphism from \(J \) to \(K \) if
 - \(\mu(c) = c \) for every \(c \in \text{Const} \); and
 - \(\mu(f) \in K \) for every \(f \in J \).
- That is, a homomorphism maps every constant to itself, and every \(J \)-fact to a \(K \)-fact.

Notation

- Let \(J \) and \(K \) be two target instances
- We denote by \(J \rightarrow K \) the fact that there exists a homomorphism from \(J \) to \(K \)
- Note: many homomorphisms from \(J \) to \(K \) may exist
- \(J \rightarrow K \) means that \(K \) contains a homomorphic image of \(J \)
 - that is, a set of facts that could be obtained from \(J \) by an assignment of constants or variables to the variables

Example

Emp

<table>
<thead>
<tr>
<th>emp</th>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Barak</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Chen</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ahuva</td>
</tr>
<tr>
<td>2</td>
<td>Fady</td>
</tr>
</tbody>
</table>

Properties of Homomorphism

- The relationship \(\rightarrow \) is reflexive
 - \(J \rightarrow J \) for all \(J \)
- The relationship \(\rightarrow \) is transitive
 - For all \(J, K \) and \(L \), if \(J \rightarrow K \) and \(K \rightarrow L \) then \(J \rightarrow L \)
 - Why?
- The relationship \(\rightarrow \) is not symmetric
 - Example?
Two target instances J and K are \textit{isomorphic} if each one can be obtained from the other by (uniquely) renaming variables. Isomorphism is an \textit{equivalence} relation (i.e., reflexive, symmetric and transitive).

Clearly, if J and K are isomorphic, then $J \rightarrow K$ and $K \rightarrow J$.

But not vice versa.

Later: how to prove that this is indeed a universal solution?

As we have seen, universal solutions are not necessarily isomorphic to each other.

Moreover, different universal solutions can have different sizes.

They are, though, \textit{homomorphically equivalent} to one another.

That is, there are homomorphisms in both directions.

Variety of Universal Solutions

Let J be a v-instance.

An \textit{endomorphism} on J is a homomorphism from J to itself.

The endomorphism is \textit{proper} if it maps J to a proper subset of J.

The \textit{core} of J, denoted $\text{Core}(J)$, is a subinstance J' of J such that:

- There is a homomorphism (endomorphism) from J to J'.
- There is no proper endomorphism on J'.

Why “the” core? Next...
Theorem [HN92]

The following hold:
- Every v-instance has a core.
- All cores of a v-instance are isomorphic.
- If $J \rightarrow K$ and $K \rightarrow J$, then $\text{Core}(J) \cong \text{Core}(K)$.

Example 1 Revisited

$R(x) \rightarrow T(x, x)$

$T(x, y), T(y, y), T(y, z) \rightarrow T(x, z)$

$I = \{ R(a) \}$

<table>
<thead>
<tr>
<th>T</th>
<th>\Rightarrow</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$a_1 \rightarrow a_1$</td>
<td>a_1</td>
</tr>
<tr>
<td>a_2</td>
<td>$a_2 \rightarrow a_2$</td>
<td>a_2</td>
</tr>
<tr>
<td>a_3</td>
<td>$a_3 \rightarrow a_3$</td>
<td>a_3</td>
</tr>
<tr>
<td>a_4</td>
<td>$a_4 \rightarrow a_4$</td>
<td>a_4</td>
</tr>
</tbody>
</table>

Example 2

<table>
<thead>
<tr>
<th>T</th>
<th>\Rightarrow</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$a_1 \rightarrow a$</td>
<td>a_1</td>
</tr>
<tr>
<td>a_2</td>
<td>$a_2 \rightarrow a$</td>
<td>a_2</td>
</tr>
<tr>
<td>a_3</td>
<td>$a_3 \rightarrow a$</td>
<td>a_3</td>
</tr>
<tr>
<td>a_4</td>
<td>$a_4 \rightarrow a$</td>
<td>a_4</td>
</tr>
</tbody>
</table>

Endomorphic Images of Solutions

- Let (S, T, Σ) be a schema mapping, and let I be a source instance.
- Suppose that J is a solution and μ is an endomorphism over J.
- Is $\mu(J)$ necessarily a solution?
- No!

Cores of Solutions Are Solutions

Theorem [FKP05]

Let (S, T, Σ) be a schema mapping, let I be a source instance, and let J be target instance. If J is a solution, then $\text{Core}(J)$ is a solution.
• We now get a good candidate for a solution: the core of a universal solution
 • Simply called a core solution
• We know:
 • There is a universal solution if and only if there is a core solution
 • All core solutions are isomorphic
 • Core solutions are universal solutions
 • why?
 • Core solutions are the smallest universal solutions
 • why?

We evaluate a query \(Q \) over a target instance \(J \) by treating each labeled null as a unique value

Clearly, different solutions \(J \in \text{Sol}_M(I) \) may have different results \(Q(J) \)

Certain Answers

Definition (Certain Answers)

Let \(M \) be a schema mapping, \(I \) a source instance, and \(Q \) be a target query. We denote by \(\text{Certain}_Q, M(I) \) the relation that consists of all the tuples that occur in \(Q(J) \) for all solutions \(J \); that is:

\[
\text{Certain}_Q, M(I) = \bigcap \{ Q(J) \mid J \in \text{Sol}_M(I) \}
\]

A tuple in \(\text{Certain}_Q, M(I) \) is called a certain answer.

Recall that a conjunctive query (CQ) is a query of the form

\[
Q(x) = \exists y \left[\psi_1(x, y) \land \cdots \land \psi_k(x, y) \right]
\]

where each \(\psi_i(x, y) \) is an atomic query

• A union of conjunctive queries (UCQ) is a query of the form

\[
Q(x) = \psi_1(x) \lor \cdots \lor \psi_k(x)
\]

where each \(Q(x) = \psi_i(x) \) is a CQ

If \(Q \) is a target query and \(J \) is a target instance, then \(Q(J) \)

denotes the relation obtained from \(Q(J) \) by removing every tuple with one or more nulls

Answering UCQs via Universal Solutions

Theorem (FKMP'03)

Let \(M = (S, T, \Sigma) \) be a schema mapping, \(Q \) a target UCQ, and \(I \) a source instance. If \(J \) is a universal solution, then

\[
Q(J)_I = \text{Certain}_Q, M(I)
\]
The Chase is a standard technique in reasoning about databases with integrity constraints [BV84].

- Idea:
 - Start with the original database instance
 - Repeatedly, look for a violation of a constraint, and fix by revising the instance
 - . . . until no violations remain (or the violation cannot be fixed)

Chase Steps for Data Exchange

- Start with $J = \emptyset$
- TGD violation: $\psi(x) \Rightarrow \exists y \psi(x, y)$
- **Violation**: an assignment α to x, such that $\psi(\alpha(x))$ holds, but there is no b such that $\psi(\alpha(x), b)$
- **Fix**: add the facts of $\psi(\alpha(x), y)$, where each existential variable in y is replaced with a fresh null
- EGD violation: $\psi(x) \Rightarrow y_1 = y_2$
- **Violation**: An assignment α to x, such that $\alpha(\psi(x))$ holds, but $\alpha(y_1) \neq \alpha(y_2)$
- **Fix**: 3 cases
 - $\alpha(y_1)$ is a labeled null: replace every $\alpha(y_2)$ with $\alpha(y_1)$ in J
 - $\alpha(y_2)$ is a labeled null: replace every $\alpha(y_1)$ with $\alpha(y_2)$ in J
 - Both $\alpha(y_1)$ and $\alpha(y_2)$ are constants: terminate with failure

Chase Example

- **ManagedBy**
- **Emp**
- **Dept**

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>emp</td>
<td>mgr</td>
</tr>
<tr>
<td>Chen</td>
<td>emp</td>
<td>dept</td>
</tr>
<tr>
<td>Ella</td>
<td>emp</td>
<td>dept</td>
</tr>
<tr>
<td>Ahuva</td>
<td>dept</td>
<td>mgr</td>
</tr>
<tr>
<td>Doron</td>
<td>dept</td>
<td>mgr</td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) \Rightarrow Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) \Rightarrow $d = d'$
- Dept(d, m) \Rightarrow Emp(m, d)
Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>emp</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Barak</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Chen</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>Ella</td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) → d = d'
- Dept(d, m) → Emp(m, d)

Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>emp</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Barak</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Chen</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>Ella</td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) → d = d'
- Dept(d, m) → Emp(m, d)

Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>emp</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Barak</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Chen</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>Ella</td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) → d = d'
- Dept(d, m) → Emp(m, d)

Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td>emp</td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td>Barak</td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td>Chen</td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td>Ella</td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) → d = d'
- Dept(d, m) → Emp(m, d)
Chase Gives a Universal Solution

Theorem [FKMP05]

Let $M = (S, T, \Sigma)$ be a schema mapping and I a source instance.

- If the chase terminates successfully, then the result is a universal solution.
- If the chase terminates with failure, then there is no solution at all.

The result of a successful chase is called a **canonical** universal solution.

Chase Example

<table>
<thead>
<tr>
<th>ManagedBy</th>
<th>Emp</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>emp</td>
<td>mgr</td>
<td></td>
</tr>
<tr>
<td>Barak</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td>Doron</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emp</th>
<th>dept</th>
<th>dept</th>
<th>mgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barak</td>
<td>1_1</td>
<td>Ahuva</td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td>1_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td>1_3</td>
<td>Doron</td>
<td></td>
</tr>
<tr>
<td>Ahuva</td>
<td>1_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doron</td>
<td>1_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ManagedBy(e, m) \rightarrow Emp(e, d), Dept(d, m)
- Dept(d, m), Dept(d', m) \rightarrow $d = d'$
- Dept(d, m) \rightarrow Emp(m, d)

Chase Failure and Termination

There are three kinds of chase executions:

- Termination with success
- Termination with failure
- Non-termination
 - How can that be?
 - Person(x) \rightarrow ChildOf(x, y) ChildOf(x, y) \rightarrow ChildOf(y, z)

Chase Termination

- We would like to be able to test whether a schema mapping $M = (S, T, \Sigma)$ is such that the chase is guaranteed to terminate
- Unfortunately, this is provably impossible
The following problems are undecidable. Given a schema mapping \((S,T,\Sigma)\) and a source instance \(I\):

- Is there any solution?
- Is there any universal solution?
- Is there any terminating chase?
- Is every chase terminating?

Theorem [KPT06, DNR08]

Theorem: **Weak acyclicity** is a property of a schema mapping that guarantees termination of the chase (and further consequent goodness properties).

Dependency Graph

- Let \((S,T,\Sigma)\) be a schema mapping
- A **position** is an expression of the form \(R.A\), where \(R\) is a relation name and \(A\) is an attribute of \(R\)
- The **dependency graph** of \(\Sigma\) is the directed graph \(G_\Sigma\) defined as follows:
 - The nodes are the positions
 - For each t-TGD \(\varphi(x) \rightarrow \exists y \psi(x,y)\), position \(p\) at \(\varphi(x)\), position \(q\) at \(\psi(x,y)\) there is an edge \(p \rightarrow q\) if:
 - \(p\) and \(q\) have the same variable (ordinary edge)
 - \(q\) has an existential variable (special edge)

Example

- ManagedBy\((e, m)\) \(\rightarrow\) Emp\((e, d)\), Dept\((d, m)\)
- Dept\((d, m)\) \(\rightarrow\) Emp\((m, d)\)
- Emp\((e, d)\) \(\rightarrow\) Dept\((d, m)\)

\[
\text{Dept.dept} \rightarrow \text{Emp.dept} \quad \text{Dept.mgr} \rightarrow \text{Emp.emp}
\]

Weak Acyclicity

- \(\Sigma\) is **weakly acyclic** if \(G_\Sigma\) does not have any cycle that goes through a special edge
- Note: weak acyclicity is a property of the t-TGDs (independent of the st-TGDs and t-EGDs)
- Weak acyclicity can be tested in polynomial time in \(\Sigma\)

Example: Weak Acyclic

- ManagedBy\((e, m)\) \(\rightarrow\) Emp\((e, d)\), Dept\((d, m)\)
- Dept\((d, m)\) \(\rightarrow\) Emp\((m, d)\)

\[
\text{Dept.dept} \rightarrow \text{Emp.dept} \quad \text{Dept.mgr} \rightarrow \text{Emp.emp}
\]
Example: Not Weakly Acyclic

- ManagedBy(e, m) → Emp(e, d), Dept(d, m)
- Dept(d, m) → Emp(m, d)
- Emp(e, d) → Dept(d, m)

\[
\begin{align*}
\text{Dept.dept} & \quad \rightarrow \quad \text{Emp.dept} \\
\text{Dept.mgr} & \quad \rightarrow \quad \text{Emp.emp}
\end{align*}
\]

Weak Acyclicity and Chase Termination

Theorem [FKMP05]

Let \(M = (S, T, \Sigma) \) be a schema mapping. Assume that \(\Sigma \) is weakly acyclic. Given a source instance \(I \), the chase terminates in polynomial time in \(|I| \).

(The degree of the polynomial is determined by \(M \).)

Algorithm for Answering Target UCQs

- We now have an algorithm for computing the certain answers, given a source instance \(I \) for a schema mapping \((S, T, \Sigma)\):
 - chase \(I \) and \(\Sigma \)
 - if the chase fails then abort(“no solution”)
 - else let \(J \) be the resulting solution
 - return \(Q(J) \)

- Of course, the algorithm assumes that the chase terminates
- If \(\Sigma \) is weakly acyclic, we get a polynomial-time algorithm

Computing a Core Solution

- Can we construct a core solution in polynomial time if \(\Sigma \) is weakly acyclic?
- The straightforward way is:
 - Compute a universal solution \(J \) via chase
 - Compute the core of \(J \)
- Does it return the correct result?
- Is it a polynomial-time strategy?
- What is the complexity of finding the core of a \(v \)-instance?

Reduction from 3-Colorability (1)

- We show that it is NP-hard to compute the core of a \(v \)-instance
- Reduction from 3-colorability: given a graph \(g \), is there a legal node coloring by 3 colors?
- Denote \(g = (V, E) \) where \(V = \{v_1, \ldots, v_n\} \)
- Construct a \(v \)-instance \(D \) with a single relation \(R_D \) that consists of only labeled nulls
 - \(R(i, i) \) for all \(i < j \) such that \(\{v_i, v_j\} \) is an edge
 - \(R(x, y) \) for every \(x \neq y \) in \(\{r, g, b\} \)
 - Denote this part of \(D \) as \(D_A \)
Reduction from 3-Colorability (2)

- Claim: the core of D is D_{Δ} if and only if g is 3-colorable
- Proof steps:
 - If $Core(D) = D_{\Delta}$ then the endomorphism is a legal 3-coloring
 - A 3-coloring defines an endomorphism to D_{Δ}
 - $Core(D_{\Delta}) = D_{\Delta}$
- This establishes NP-hardness
- Nevertheless, D is not necessarily the result of chasing with a weakly acyclic Σ!
- Gottlob and Nash [GN08] proved that, if J is the result of such a chase, then $Core(D)$ can, in fact, be computed in polynomial time.

Theorem [GN08]

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping. Assume that Σ is weakly acyclic. Given a source instance I, a core solution can be found in polynomial time, if any solution exists.

References