Principles of Managing Uncertain Data

Lecture 3: Querying Complexity
Table of Contents

1. Introduction
2. Data and Combined Complexity
3. Parameterized Complexity
4. Input-Output Complexity
1. Introduction

2. Data and Combined Complexity

3. Parameterized Complexity

4. Input-Output Complexity
Complexity Measures for Database Querying

- Classical complexity theory considers two types of problems:
 - Decision: given x, decide whether x is a yes/no input
 - Function: given x, compute the $f(x)$ for some function f
Classical complexity theory considers two types of problems:
- **Decision**: given x, decide whether x is a yes/no input
- **Function**: given x, compute the $f(x)$ for some function f

Database queries are typically so general that there are no "easy" (e.g., polynomial-time) problems.
Complexity Measures for Database Querying

- Classical complexity theory considers two types of problems:
 - Decision: given x, decide whether x is a yes/no input
 - Function: given x, compute the $f(x)$ for some function f
- Database queries are typically so general that there are no “easy” (e.g., polynomial-time) problems
- There are certain general parameters of a query-evaluation problem that have a major impact on the complexity, and allow to isolate significant “islands of tractability”
Complexity Measures for Database Querying

- Classical complexity theory considers two types of problems:
 - Decision: given x, decide whether x is a yes/no input
 - Function: given x, compute the $f(x)$ for some function f
- Database queries are typically so general that there are no “easy” (e.g., polynomial-time) problems
- There are certain general parameters of a query-evaluation problem that have a major impact on the complexity, and allow to isolate significant “islands of tractability”
- Hence, we often adopt finer notions of complexity
Database vs. Query Size

- The most important feature of query evaluation is that databases are typically large, whereas queries/schemas are tiny
The most important feature of query evaluation is that databases are typically large, whereas queries/schemas are tiny. This gives rise to various notions of complexity:

- *Data complexity*
- *Parameterized complexity*
Queries may be asked to compute huge answers (e.g., Cartesian products)
Queries may be asked to compute huge answers (e.g., Cartesian products)

Is a query hard because it is asked to compute a huge object? Or it is hard even for a small output?

- What is the complexity *per output bit*?
Queries may be asked to compute huge answers (e.g., Cartesian products)

- Is a query hard because it is asked to compute a huge object? Or it is hard even for a small output?
 - What is the complexity *per output bit*?

- This gives rise to additional notions of complexity:
 - *Input-output complexity*
 - And in particular, *enumeration complexity*
We will learn the aforementioned notions of complexity
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.</td>
<td>Data and Combined Complexity</td>
</tr>
<tr>
<td>3.</td>
<td>Parameterized Complexity</td>
</tr>
<tr>
<td>4.</td>
<td>Input-Output Complexity</td>
</tr>
</tbody>
</table>
We consider computational problems that involve one or more of the following components:

- Schema \mathcal{S}
- A set Σ of constraints
- A query Q
- A database I
We consider computational problems that involve one or more of the following components:

- Schema S
- A set Σ of constraints
- A query Q
- A database I

- **Combined complexity:** everything is given as input
- **Data complexity:** I is given as input, everything else is fixed

 Formally, we consider infinitely many computational problems $P_{S,\Sigma,Q}$, one per combination of S, Σ and Q.
Example: Complexity of CQ Answering

Problem Def. (Boolean CQ Evaluation)

Given a schema S, a Boolean CQ Q over S and an instance I over S, determine whether $Q(I) = \text{true}$.

We will show that this problem is NP-complete under combined complexity, by reduction from the Clique problem.
Example: Complexity of CQ Answering

Problem Def. (Boolean CQ Evaluation)

Given a schema S, a Boolean CQ Q over S and an instance I over S, determine whether $Q(I) = \text{true}$.

We will show that this problem is NP-complete under *combined complexity*, by reduction from the Clique problem.
Problem Def. (Boolean CQ Evaluation)

Given a schema S, a Boolean CQ Q over S and an instance I over S, determine whether $Q(I) = \text{true}$.

We will show that this problem is NP-complete under combined complexity, by reduction from the Clique problem.

Problem Def. (Clique)

Given a graph $G = (V, E)$ and a number k, determine whether G contains a clique of size k, that is, a subset U of V such that $|U| = k$ and every two nodes in U are neighbours.
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:
 - $S = \{R_E/2\}$
 - $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
 - Q_k is a CQ with existential variables X_1, \ldots, X_k, and an atom $R_E(X_i, X_j)$ for every i and j with $1 \leq i < j \leq k$
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:
 - $S = \{R_E/2\}$
 - $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
 - Q_k is a CQ with existential variables X_1, \ldots, X_k, and an atom $R_E(X_i, X_j)$ for every i and j with $1 \leq i < j \leq k$

- For example, suppose that G is the following graph:

```
1 -- 2
|   |
|   |
3 -- 4
```
Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:

- $S = \{R_E/2\}$
- $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
- Q_k is a CQ with existential variables X_1, \ldots, X_k, and an atom $R_E(X_i, X_j)$ for every i and j with $1 \leq i < j \leq k$

For example, suppose that G is the following graph:

For

$Q_3() :\neg R_E(X_1, X_2), R_E(X_1, X_3), R_E(X_2, X_3)$
The reduction is correct since the following two are equivalent:

1. G has a clique of size at least k
2. $Q_k(I_G) = \text{true}$
Correctness

- The reduction is correct since the following two are equivalent:
 1. G has a clique of size at least k
 2. $Q_k(I_G) = \text{true}$

- Hence, determining whether $Q(I) = \text{true}$, given S, Q and I, is NP-hard
 - Membership in NP is straightforward, hence, the problem is NP-complete
Correctness

- The reduction is correct since the following two are equivalent:
 1. G has a clique of size at least k
 2. $Q_k(I_G) = \text{true}$

- Hence, determining whether $Q(I) = \text{true}$, given S, Q and I, is NP-hard
 - Membership in NP is straightforward, hence, the problem is NP-complete

- Note: The schema S does not depend on the input (G, k), but the size of Q is quadratic in k
What is the data complexity of answering a query in RA?
What is the data complexity of answering a query in RA?

- We consider the problem $P_{S,Q}$ of computing the answers for a query Q in RA (Relational Algebra) over a given input instance I over S
Data Complexity

What is the data complexity of answering a query in RA?

- We consider the problem $P_{S,Q}$ of computing the answers for a query Q in RA (Relational Algebra) over a given input instance I over S.
- The naive way of straightforwardly executing Q runs in polynomial time!
 - *What is the degree of the polynomial?*
What is the data complexity of answering a query in RA?

- We consider the problem $P_{S,Q}$ of computing the answers for a query Q in RA (Relational Algebra) over a given input instance I over S.
- The naive way of straightforwardly executing Q runs in polynomial time!
 - What is the degree of the polynomial?
- As a special case, CQ evaluation is in polynomial time under data complexity.
 - Note that data complexity is insensitive to the representation of the query.
Under *combined complexity*, CQ evaluation is intractable

- Boolean CQ evaluation is NP-complete
- The non-emptiness problem for CQ evaluation (i.e., is there at least one tuple in the result?) is NP-complete
Summary for CQs

- Under *combined complexity*, CQ evaluation is intractable
 - Boolean CQ evaluation is NP-complete
 - The non-emptiness problem for CQ evaluation (i.e., is there at least one tuple in the result?) is NP-complete
- Under *data complexity*, CQ evaluation is solvable in polynomial time
Summary for CQs

- Under *combined complexity*, CQ evaluation is intractable
 - Boolean CQ evaluation is NP-complete
 - The non-emptiness problem for CQ evaluation (i.e., is there at least one tuple in the result?) is NP-complete
- Under *data complexity*, CQ evaluation is solvable in polynomial time
 - That is, for every CQ Q there exists a polynomial-time algorithm A_Q to compute $Q(I)$ on a given instance I
Under *combined complexity*, CQ evaluation is intractable

 - Boolean CQ evaluation is NP-complete
 - The non-emptiness problem for CQ evaluation (i.e., is there at least one tuple in the result?) is NP-complete

Under *data complexity*, CQ evaluation is solvable in polynomial time

 - That is, for every CQ Q there exists a polynomial-time algorithm A_Q to compute $Q(I)$ on a given instance I
 - The naive way gives a polynomial running time where the degree depends on the query (next: *Is it necessary?*)
Table of Contents

1. Introduction
2. Data and Combined Complexity
3. Parameterized Complexity
4. Input-Output Complexity
Parameterized Complexity

- Parameterized complexity provides a yardstick of efficiency somewhere between data complexity and combined complexity
Parameterized Complexity

- *Parameterized complexity* provides a yardstick of efficiency somewhere between *data complexity* and *combined complexity*

- Intuitively, we would like to have evaluation in polynomial time in the size of the database, but we allow the query to affect *only the coefficient* of the polynomial; not the *degree* of the polynomial
Parameterized Complexity

- **Parameterized complexity** provides a yardstick of efficiency somewhere between data complexity and combined complexity.

- Intuitively, we would like to have evaluation in polynomial time in the size of the database, but we allow the query to affect only the coefficient of the polynomial; not the degree of the polynomial.

- This is formalized and explored in the framework of parameterized complexity.
 - Where the parameter here is the size of the query.
Formal Definition

- Recall: a decision problem is a set of strings (representing problem instances)
- A decision problem D is solvable in polynomial time if there exists an algorithm A and a polynomial p such that A:
 - solves D (i.e., decides whether a given input string x is in D)
 - terminates in at most $p(|x|)$ steps on every input x
Formal Definition

- Recall: a decision problem is a set of strings (representing problem instances).
- A decision problem D is solvable in polynomial time if there exists an algorithm A and a polynomial p such that A:
 - solves D (i.e., decides whether a given input string x is in D)
 - terminates in at most $p(|x|)$ steps on every input x
- A parameterized decision problem is a set of pairs (x, k), where x is a string and k is a natural number—the parameter
Formal Definition

- Recall: a *decision problem* is a set of strings (representing problem instances).
- A decision problem D is *solvable in polynomial time* if there exists an algorithm A and a polynomial p such that A:
 - solves D (i.e., decides whether a given input string x is in D)
 - terminates in at most $p(|x|)$ steps on every input x
- A *parameterized decision problem* is a set of pairs (x, k), where x is a string and k is a natural number—the *parameter*.
- A parameterized decision problem D is *Fixed Parameter Tractable*, or FPT, if there exists an algorithm A, a (computable) function f and a polynomial p such that A:
 - solves D (decides whether a given (x, k) is in D)
 - terminates in at most $f(k) \cdot p(|x|)$ steps on every input (x, k), where f is computable and p is a polynomial.
Vertex Cover

Input: Graph g, natural number k

Goal: Determine whether there is a *vertex cover* of size k
Vertex Cover

Input: Graph g, natural number k

Goal: Determine whether there is a *vertex cover* of size k

- Recall: a *vertex cover* is a set of nodes that hits all edges
Vertex Cover

Input: Graph \(g \), natural number \(k \)

Goal: Determine whether there is a *vertex cover* of size \(k \)

- Recall: a *vertex cover* is a set of nodes that hits all edges
- *Why is this problem in polynomial time for every fixed \(k \)?*
Parameterized Vertex Cover

Vertex Cover

Input: Graph g

Parameter: k

Goal: Determine whether there is a *vertex cover* of size k
Notation

- Let $G = (V, E)$ be a graph
- Let $v \in V$ be a node of G
Notation

- Let $G = (V, E)$ be a graph
- Let $v \in V$ be a node of G
- We denote by $G - v$ that graph G' that is obtained from G by removing v and all of its incident edges
Notation

- Let $G = (V, E)$ be a graph
- Let $v \in V$ be a node of G
- We denote by $G - v$ that graph G' that is obtained from G by removing v and all of its incident edges
- That is, $G - v$ is the graph $G' = (V', E')$ where

$$V' = V \setminus \{v\} \quad E' = \{ e \in E \mid v \notin e \}$$
FPT Algorithm

\textbf{VertexCover}(g, k)

1. if \(k < 0 \) then
2. \hspace{1em} return false
3. if \(k \geq 0 \) and \(g \) has no edges then
4. \hspace{1em} return true
FPT Algorithm

VertexCover\((g, k)\)

1 if \(k < 0\) then
2 | return false
3 if \(k \geq 0\) and \(g\) has no edges then
4 | return true
5 select an arbitrary edge \(e = \{u, v\}\);
6 if VertexCover\((g - u, k - 1)\) then
7 | return true
8 if VertexCover\((g - v, k - 1)\) then
9 | return true
10 return false;
FPT Algorithm

VertexCover\((g, k)\)

1. if \(k < 0\) then
2. \hspace{1em} return false
3. if \(k \geq 0\) and \(g\) has no edges then
4. \hspace{1em} return true
5. select an arbitrary edge \(e = \{u, v\}\);
6. if VertexCover\((g - u, k - 1)\) then
7. \hspace{1em} return true
8. if VertexCover\((g - v, k - 1)\) then
9. \hspace{1em} return true
10. return false;

Why is this algorithm FPT?
Hardness in Parameterized Complexity

- Like classical complexity, in parameterized complexity there are also problems that are strongly assumed to be hard
 - That is, not FPT
Like classical complexity, in parameterized complexity there are also problems that are strongly assumed to be hard.

- That is, not FPT.

This is captured by the W-hierarchy (that we do not define formally here).

- $W[1]$-hard is not likely to be FPT.
Hardness in Parameterized Complexity

- Like classical complexity, in parameterized complexity there are also problems that are strongly assumed to be hard
 - That is, not FPT
- This is captured by the *W-hierarchy* (that we do not define formally here)
 - *W[1]-hard* is not likely to be FPT
 - *W[2]-hard* is harder than *W[1]*, etc.
- Examples of *W[1]-hard* problems:
 - Independent set: \(\{(g, k) \mid g \text{ has an ind. set of size } k \} \)
 - Clique: \(\{(g, k) \mid g \text{ has a clique of size } k \} \) (same problem)
 - We will see another one next
Hardness in Parameterized Complexity

- Like classical complexity, in parameterized complexity there are also problems that are strongly assumed to be hard
 - That is, not FPT
- This is captured by the W-*hierarchy* (that we do not define formally here)
 - $W[1]$-hard is not likely to be FPT
- Examples of $W[1]$-hard problems:
 - Independent set: $\{(g, k) \mid g$ has an ind. set of size k\}
 - Clique: $\{(g, k) \mid g$ has a clique of size k\} (same problem)
 - We will see another one next
- Example of a $W[2]$-hard problem:
 - Dominating set: $\{(g, k) \mid g$ has a *dominating set* of size k\}
 - Dominating set: each node is there or has a neighbor there
Parameterized CQ Evaluation

Input: Boolean CQ Q, instance I

Parameter: Size of Q

Goal: Compute $Q(I)$
W[1]-Hardness of Boolean CQ Evaluation

Recall our reduction from maximum clique to Boolean CQ evaluation

\[G = Q \left(R_E(X_1, X_2), R_E(X_1, X_3), R_E(X_2, X_3) \right) \]
Recall our reduction from maximum clique to Boolean CQ evaluation

\[Q_3() \vdash R_E(X_1, X_2), R_E(X_1, X_3), R_E(X_2, X_3) \]

\[I_G = \begin{array}{c|ccc}
1 & 3 \\
2 & 3 \\
2 & 4 \\
3 & 4 \\
\end{array} \]
In the reduction, the size of the CQ was determined only by k.
In the reduction, the size of the CQ was determined only by k.

In formal terms, our reduction is a so called *FTP reduction*.
In the reduction, the size of the CQ was determined only by k.

In formal terms, our reduction is a so called \textit{FTP reduction}.

Hence, Boolean CQ evaluation is W[1]-hard when the size of the CQ is the parameter.
In the reduction, the size of the CQ was determined only by k.

In formal terms, our reduction is a so-called FTP reduction.

Hence, Boolean CQ evaluation is W[1]-hard when the size of the CQ is the parameter.

Hence, no hope for FPT without further assumptions; the query necessarily determines the degree of the polynomial data complexity.
Table of Contents

1 Introduction

2 Data and Combined Complexity

3 Parameterized Complexity

4 Input-Output Complexity
In this section we adopt the *combined complexity*, hence nothing is fixed.
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time...
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time... *But:*
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time... *But*:
- What if on some instance there are just a few tuples?
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time... *But:*

- What if on some instance there are just a few tuples?
- Is high complexity only due to #tuples?
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time. . . *But:*

- What if on some instance there are just a few tuples?
- Is high complexity only due to \#tuples?
- What about incremental evaluation (produce as much as we have time for)?
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time... *But:*

- What if on some instance there are just a few tuples?
- Is high complexity only due to #tuples?
- What about incremental evaluation (produce as much as we have time for)?

Input-output complexity measures the time as a function of both the input and the output.
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time... *But:*

- What if on some instance there are just a few tuples?
- Is high complexity only due to #tuples?
- What about incremental evaluation (produce as much as we have time for)?

Input-output complexity measures the time as a function of both the input and the output.

Next, we make it more formal.
Notation

If \(S \) is a (possibly infinite) set, then we denote by \(\mathcal{P}_{\text{fin}}(S) \) the set of all finite subsets of \(S \).
An *enumeration problem* E has an *input space* $\text{In}(E)$, an *output space* $\text{Out}(E)$, and it maps every input $x \in \text{In}(E)$ into a finite subset $E(x)$ of $\text{Out}(E)$

$$E : \text{In}(E) \to \mathcal{P}_{\text{fin}}(\text{Out}(E))$$
An enumeration problem E has an input space $\text{In}(E)$, an output space $\text{Out}(E)$, and it maps every input $x \in \text{In}(E)$ into a finite subset $E(x)$ of $\text{Out}(E)$

$$E : \text{In}(E) \rightarrow \mathcal{P}_{\text{fin}}(\text{Out}(E))$$

Examples:
- $\text{In}(E)$: pairs (query, instance); $\text{Out}(E)$: tuples of values
- $\text{In}(E)$: graphs; $\text{Out}(E)$: node sets
An enumeration problem E has an input space $\text{In}(E)$, an output space $\text{Out}(E)$, and it maps every input $x \in \text{In}(E)$ into a finite subset $E(x)$ of $\text{Out}(E)$

$$E : \text{In}(E) \rightarrow \mathcal{P}_{\text{fin}}(\text{Out}(E))$$

Examples:
- $\text{In}(E)$: pairs (query,instance); $\text{Out}(E)$: tuples of values
- $\text{In}(E)$: graphs; $\text{Out}(E)$: node sets

Computational task for E: Given $x \in \text{In}(E)$, compute (or enumerate) the items of $E(x)$
Let E be an enumeration problem

A *solver* for E is an algorithm A that, given $x \in \text{In}(E)$, produces (or *prints*) a sequence of elements in $\text{Out}(E)$ during its execution, and has the following properties:

- **Soundness**: every produced answer is in $E(x)$
- **Completeness**: every answer in $E(X)$ is produced
- **Nonrepeating**: no answer is produced more than once
Johnson, Papadimitriou and Yannakakis [JPY88] introduced several different notions of efficiency for enumeration algorithms.

- Let E be an enumeration problem, and let A be solver for E.
- **Polynomial total time**: the total execution time of A is polynomial in $|x| + |E(x)|$.
- **Polynomial delay**: the time between every two executive outputs is polynomial in $|x|$.
- **Incremental polynomial time**: after producing N elements, the time to produce the next element is polynomial in $|x| + N$.
Implications among Measures

Polynomial delay

\[\Downarrow \]

Incremental polynomial time

\[\Downarrow \]

Polynomial total time
Example: Path CQ

- We now look at an example of an algorithm that enumerates in polynomial total time.
Example: Path CQ

- We now look at an example of an algorithm that enumerates in polynomial total time
- Problem: evaluate a CQ of the following form over $R/2$:

\[
Q_n(x_1, \ldots, x_n) :- R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n)
\]
Example: Path CQ

- We now look at an example of an algorithm that enumerates in polynomial total time.
- Problem: evaluate a CQ of the following form over $R/2$:

$Q_n(x_1, \ldots, x_n) \leftarrow R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n)$

- That is, compute all length-n paths of a given directed graph.
 - The directed graph is represented by an instance I over R.
 - Not necessarily *simple* paths.
First Attempt

1 \(A_2 := I; \)
2 \[\text{for } i = 3, \ldots, n \text{ do} \]
3 \[\hspace{1em} /* \text{Join previous with } I */ \]
4 \[A_i := \{(a_1, \ldots, a_i) \mid (a_1, \ldots, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I\}; \]
5 \[/* \text{Print the output */} \]
6 \[\text{forall } t \in A_n \text{ do} \]
7 \[\text{print } t; \]

Given: \(Q_n, I \) \hspace{1em} Compute: \(Q_n(I) \)

\(Q_n(x_1, \ldots, x_n) := R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n) \)
First Attempt

1. $A_2 := I$;
2. for $i = 3, \ldots, n$ do
 /* Join previous with I */
 $A_i := \{(a_1, \ldots, a_i) \mid (a_1, \ldots, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I\}$;
 /* Print the output */
3. forall $t \in A_n$ do
4. print t;

Given: Q_n, I Compute: $Q_n(I)$

$Q_n(x_1, \ldots, x_n) := R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n)$

Is the algorithm correct (sound, complete, nonrepeating)?
First Attempt

Given: Q_n, I
Compute: $Q_n(I)$

$$Q_n(x_1, \ldots, x_n) \leftarrow R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n)$$

Is the algorithm correct (sound, complete, nonrepeating)?

Does the algorithm guarantee polynomial total time?
Example of a Problematic Case

\[n = 7 \]
Revised Algorithm

1 \(I_n := I \);
2 \textbf{for} i = n - 1, \ldots, 2 \textbf{ do} \\
3 \quad I_i := \{ (a, b) \in I \mid \exists c [(b, c) \in I_{i+1}] \} ; \quad /* \text{semijoin} */ \\
4 \quad /* \text{Now join, as in the previous (slow) algorithm} */ \\
5 \quad \textbf{for} i = 3, \ldots, n \textbf{ do} \\
6 \quad \quad /* \text{Join previous with} I_i */ \\
7 \quad \quad A_i := \{ (a_1, \ldots, a_i) \mid (a_1, \ldots, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I_i \} ; \\
8 \quad \quad /* \text{Print the output} */ \\
9 \quad \textbf{forall} t \in A_n \textbf{ do} \\
10 \quad \quad \text{print} t ;

Given: \(Q_n, I \); Compute: \(Q_n(I) \)
Revised Algorithm

1. $I_n := I$;
2. for $i = n-1, \ldots, 2$ do
3. $I_i := \{(a, b) \in I | \exists c[(b, c) \in I_{i+1}]\}$; /* semijoin */
4. /* Now join, as in the previous (slow) algorithm */
4. for $i = 3, \ldots, n$ do
5. /* Join previous with I_i */
5. $A_i := \{(a_1, \ldots, a_i) | (a_1, \ldots, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I_i\}$;
6. /* Print the output */
6. for all $t \in A_n$ do
7. print t;

Given: Q_n, I; Compute: $Q_n(I)$

Why is it correct? Is it polynomial time? Polynomial total time?
We have seen an algorithm for computing all the paths of a given length n in polynomial total time.
We have seen an algorithm for computing all the paths of a given length n in polynomial total time.

What about all *simple* paths of length n?
We have seen an algorithm for computing all the paths of a given length n in polynomial total time.

What about all *simple* paths of length n?

Problem: Deciding whether a graph g has a simple path of length n, given g and n, is NP-complete.

- Generalizes the *Hamiltonian path* problem.
We have seen an algorithm for computing all the paths of a given length n in polynomial total time. What about all *simple* paths of length n?

Problem: Deciding whether a graph g has a simple path of length n, given g and n, is NP-complete.

- Generalizes the *Hamiltonian path* problem

Assuming $P \neq NP$, can there be an enumeration algorithm for all simple paths, of a given length, that runs in:
We have seen an algorithm for computing all the paths of a given length n in polynomial total time.

What about all *simple* paths of length n?

Problem: Deciding whether a graph g has a simple path of length n, given g and n, is NP-complete.

- Generalizes the *Hamiltonian path* problem.

Assuming $P \neq NP$, can there be an enumeration algorithm for all simple paths, of a given length, that runs in:
 - Polynomial delay?
We have seen an algorithm for computing all the paths of a given length n in polynomial total time.

What about all *simple* paths of length n?

Problem: Deciding whether a graph g has a simple path of length n, given g and n, is NP-complete.

- Generalizes the *Hamiltonian path* problem

Assuming $P \neq NP$, can there be an enumeration algorithm for all simple paths, of a given length, that runs in:
 - Polynomial delay?
 - Polynomial total time?
The Emptiness Problem

- Let E be an enumeration problem
Let E be an enumeration problem

The *emptiness problem* for E is the following:

Given $x \in \text{In}(E)$, is $E(x)$ empty?
The Emptiness Problem

- Let E be an enumeration problem
- The *emptiness problem* for E is the following:

 Given $x \in \text{In}(E)$, is $E(x)$ empty?

- We say that E has *tractable verification* if:
 1. Deciding whether $x \in \text{In}(E)$, given x, is in polynomial time
 2. Every $y \in E(x)$ is of length polynomial in that of x
 3. Deciding whether $y \in E(x)$, given x and y, is in polynomial time
Let \(E \) be an enumeration problem

- The *emptiness problem* for \(E \) is the following:

 Given \(x \in \text{In}(E) \), is \(E(x) \) empty?

- We say that \(E \) has *tractable verification* if:
 1. Deciding whether \(x \in \text{In}(E) \), given \(x \), is in polynomial time
 2. Every \(y \in E(x) \) is of length polynomial in that of \(x \)
 3. Deciding whether \(y \in E(x) \), given \(x \) and \(y \), is in polynomial time

- If \(E \) has tractable verification, then the emptiness problem of \(E \) is in coNP
The Emptiness Problem

- Let E be an enumeration problem
- The *emptiness problem* for E is the following:

 Given $x \in \text{In}(E)$, is $E(x)$ empty?
- We say that E has *tractable verification* if:
 1. Deciding whether $x \in \text{In}(E)$, given x, is in polynomial time
 2. Every $y \in E(x)$ is of length polynomial in that of x
 3. Deciding whether $y \in E(x)$, given x and y, is in polynomial time
- If E has tractable verification, then the emptiness problem of E is in coNP *Why?*
PROPOSITION

Let E be an enumeration problem with tractable verification, and assume that $P \neq NP$. If the emptiness problem of E is coNP-complete, then E cannot be solved in polynomial total time.
Proposition

Let E be an enumeration problem with tractable verification, and assume that $P \neq NP$. If the emptiness problem of E is coNP-complete, then E cannot be solved in polynomial total time.

Proof: discussion + home assignment
Next, we will see an interesting example of a polynomial-delay algorithm.
Example of Polynomial Delay

- Next, we will see an interesting example of a polynomial-delay algorithm.
- Let g be an undirected graph.
- Recall: a *clique* of g is a set C of nodes of g such that every two nodes in C are connected by an edge.
Next, we will see an interesting example of a polynomial-delay algorithm.

Let g be an undirected graph.

Recall: a clique of g is a set C of nodes of g such that every two nodes in C are connected by an edge.

A clique C is maximal if there is no clique C' such that $C \subsetneq C'$.

Do not mix with a maximum clique that has a maximal number of nodes among all cliques.
Next, we will see an interesting example of a polynomial-delay algorithm

Let g be an undirected graph

Recall: a *clique* of g is a set C of nodes of g such that every two nodes in C are connected by an edge

A clique C is *maximal* if there is no clique C' such that $C \subsetneq C'$

- Do not mix with a *maximum clique* that has a maximal number of nodes among all cliques

Next, we will see a polynomial-delay algorithm for enumerating *all maximal cliques* of a graph
Discussion on Enumerating Maximal Cliques

- What is the complexity of the emptiness problem?
Discussion on Enumerating Maximal Cliques

- What is the complexity of the emptiness problem?
- How would you generate one maximal clique?
Discussion on Enumerating Maximal Cliques

- What is the complexity of the emptiness problem?
- How would you generate one maximal clique?
- How would you generate two maximal cliques?
Discussion on Enumerating Maximal Cliques

- What is the complexity of the emptiness problem?
- How would you generate *one* maximal clique?
- How would you generate *two* maximal cliques?
- How would you generate *three* maximal cliques?
Discussion on Enumerating Maximal Cliques

- What is the complexity of the emptiness problem?
- How would you generate one maximal clique?
- How would you generate two maximal cliques?
- How would you generate three maximal cliques?
- How would you generate \(n \) maximal cliques for a given \(n \)?
Generating a Single Max Clique

1. $C := \emptyset$;
2. \textbf{forall} nodes v of g \textbf{do}
3. \hspace{1em} \textbf{if} v is connected to every node in C \textbf{then}
4. \hspace{2em} $C := C \cup \{v\}$;
5. \textbf{return} C

Given: g \hspace{1em} Compute: a maximal clique
Generating a Single Max Clique

1. \(C := \emptyset; \)
2. \(\text{forall nodes } v \text{ of } g \text{ do} \)
3. \(\text{if } v \text{ is connected to every node in } C \text{ then} \)
4. \(C := C \cup \{v\}; \)
5. \(\text{return } C \)

Given: \(g \) \hspace{1cm} **Compute:** a maximal clique

Why is the returned \(C \) a clique? Why maximal?
Maximizing a Clique

MaximizeClique\((g, B) \)

1 \(C := B; \)
2 \(\text{forall nodes } v \text{ of } g \text{ do} \)
3 \(\quad \text{if } v \text{ is connected to every node in } C \text{ then} \)
4 \(\quad \quad C := C \cup \{v\}; \)
5 \(\text{return } C \)

Given: \(g, \) clique \(B \)
Compute: a max. clique \(C \) such that \(B \subseteq C \)
Enumerating the Maximal Cliques [CFK^+06]

Given: \(g \) \hspace{1cm} \text{Compute: all maximal cliques}

1. \(C := \text{MaximizeClique}(g, \emptyset) \);
2. \(Q := \{C\} \); \hspace{1cm} /* Assume log-time ops */
3. \(\mathcal{O} := \emptyset \); \hspace{1cm} /* Printed answers, assume log-time ops */
Enumerating the Maximal Cliques [CFK+06]

Given: g Compute: all maximal cliques

1. $C := \text{MaximizeClique}(g, \varnothing)$;
2. $Q := \{C\}$; /* Assume log-time ops */
3. $O := \varnothing$; /* Printed answers, assume log-time ops */
4. while $Q \neq \varnothing$ do
5. $C := Q$.remove();
6. print C; /* Enumeration op */
7. O.insert(C); /* $O(\log|O|)$ */
8. /* Previous slide */
9. $C' := \text{MaximizeClique}(g, B)$;
10. if $C' \notin Q \cup O$; /* $O(\log Q + \log O)$ */
11. then Q.insert(C'); /* $O(\log Q)$ */
Enumerating the Maximal Cliques [CFK+06]

Given: g
Compute: all maximal cliques

1. $C := \text{MaximizeClique}(g, \emptyset)$;
2. $Q := \{C\}$;
 /* Assume log-time ops */
3. $\mathcal{O} := \emptyset$;
 /* Printed answers, assume log-time ops */
4. while $Q \neq \emptyset$ do
 5. $C := Q.\text{remove}()$;
 6. print C;
 /* Enumeration op */
 7. $\mathcal{O}.\text{insert}(C)$;
 /* $O(\log |\mathcal{O}|)$ */
8. forall nodes v of g do
 9. $B := \{v\} \cup \{u \in C \mid u \text{ is connected to } v\}$;
10. $C' := \text{MaximizeClique}(g, B)$;
 /* Previous slide */
Enumerating the Maximal Cliques \([\text{CFK}^+06]\)

Given: \(g\)
Compute: all maximal cliques

1. \(C := \text{MaximizeClique}(g, \emptyset)\);
2. \(Q := \{C\} \);
 \hspace{1cm} /* Assume log-time ops */
3. \(O := \emptyset \);
 \hspace{1cm} /* Printed answers, assume log-time ops */
4. **while** \(Q \neq \emptyset\) **do**
5. \(C := Q\).remove();
6. **print** \(C\);
 \hspace{1cm} /* Enumeration op */
7. \(O\).insert\((C)\);
 \hspace{1cm} /* \(O(\log|O|)\) */
8. **forall** nodes \(v\) **of** \(g\) **do**
9. \(B := \{v\} \cup \{u \in C \mid u\ \text{is connected to} \ v\}\);
10. \(C' := \text{MaximizeClique}(g, B)\);
 \hspace{1cm} /* Previous slide */
11. **if** \(C' \notin Q \cup O\);
 \hspace{1cm} /* \(O(\log|Q| + \log|O|)\) */
12. **then**
13. \(Q\).insert\((C')\);
 \hspace{1cm} /* \(O(\log|Q|)\) */
Correctness and Efficiency

- Why is the algorithm *sound* (printing only maximal cliques)?
- Why is the algorithm *nonrepeating*?
- Why is the algorithm running with *polynomial delay*?
- Why is the algorithm *complete*?
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique D is not printed.
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique D is not printed.
- Let D' be a maximal subset of D that is printed as part of some maximal clique, say C.
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique D is not printed
- Let D' be a **maximal subset** of D that is printed as part of some maximal clique, say C
- Let v be a node in $D \setminus D'$
 - Why does v exist?
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique D is not printed
- Let D' be a maximal subset of D that is printed as part of some maximal clique, say C
- Let v be a node in $D \setminus D'$
 - Why does v exist?
- Consider the iteration where C and v are selected
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique \(D \) is not printed
- Let \(D' \) be a maximal subset of \(D \) that is printed as part of some maximal clique, say \(C \)
- Let \(v \) be a node in \(D \setminus D' \)
 - Why does \(v \) exist?
- Consider the iteration where \(C \) and \(v \) are selected
- In that iteration, \(B \) contains \(D' \cup \{v\} \)
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique D is not printed
- Let D' be a **maximal subset** of D that is printed as part of some maximal clique, say C
- Let v be a node in $D \setminus D'$
 - *Why does v exist?*
- Consider the iteration where C and v are selected
- In that iteration, B contains $D' \cup \{v\}$
- \ldots and C' contains B, hence $D' \cup \{v\}$
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique D is not printed.
- Let D' be a maximal subset of D that is printed as part of some maximal clique, say C.
- Let v be a node in $D \setminus D'$.
 - *Why does v exist?*
- Consider the iteration where C and v are selected.
- In that iteration, B contains $D' \cup \{v\}$.
- ... and C' contains B, hence $D' \cup \{v\}$.
- ... and C' is printed at some point.
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique \(D \) is not printed.
- Let \(D' \) be a maximal subset of \(D \) that is printed as part of some maximal clique, say \(C \).
- Let \(v \) be a node in \(D \setminus D' \).
 - Why does \(v \) exist?
- Consider the iteration where \(C \) and \(v \) are selected.
- In that iteration, \(B \) contains \(D' \cup \{v\} \).
- \(\ldots \) and \(C' \) contains \(B \), hence \(D' \cup \{v\} \).
- \(\ldots \) and \(C' \) is printed at some point.
- Hence, a contradiction to our choice of \(D' \).
References I

End of lecture 3

Querying Complexity