Complexity Measures for Database Querying

- Classical complexity theory considers two types of problems:
 - Decision: given x, decide whether x is a yes/no input
 - Function: given x, compute the $f(x)$ for some function f
- Database queries are typically so general that there are no "easy" (e.g., polynomial-time) problems
- There are certain general parameters of a query-evaluation problem that have a major impact on the complexity, and allow to isolate significant "islands of tractability"
- Hence, we often adopt finer notions of complexity

Database vs. Query Size

- The most important feature of query evaluation is that databases are typically large, whereas queries/schemas are tiny
- This gives rise to various notions of complexity:
 - Data complexity
 - Parameterized complexity

Result Size

- Queries may be asked to compute huge answers (e.g., Cartesian products)
- Is a query hard because it is asked to compute a huge object? Or it is hard even for a small output?
 - What is the complexity per output bit?
- This gives rise to additional notions of complexity:
 - Input-output complexity
 - And in particular, enumeration complexity
This Lecture

We will learn the aforementioned notions of complexity.

Combined vs. Data Complexity

- We consider computational problems that involve one or more of the following components:
 - Schema S
 - A set of constraints \(\Sigma \)
 - A query \(Q \)
 - A database \(I \)

- **Combined complexity:** everything is given as input
- **Data complexity:** \(I \) is given as input, everything else is fixed

Formally, we consider infinitely many computational problems \(P_{S, \Sigma, Q} \), one per combination of \(S, \Sigma \) and \(Q \).

Example: Complexity of CQ Answering

Problem Def. (Boolean CQ Evaluation)

Given a schema \(S \), a Boolean CQ \(Q \) over \(S \) and an instance \(I \) over \(S \), determine whether \(Q(I) = \text{true} \).

We will show that this problem is NP-complete under combined complexity, by reduction from the Clique problem.

Problem Def. (Clique)

Given a graph \(G = (V, E) \) and a number \(k \), determine whether \(G \) contains a clique of size \(k \), that is, a subset \(U \) of \(V \) such that \(|U| = k \) and every two nodes in \(U \) are neighbors.

Reduction

Given \(G = (V, E) \) with \(V = \{1, \ldots, n\} \) and \(k \), construct:

- \(S = \{R_E/2\} \)
- \(I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\} \)
- \(Q_k \) is a CQ with existential variables \(X_1, \ldots, X_k \), and an atom \(R_E(X_i, X_j) \) for every \(i \) and \(j \) with \(1 \leq i < j \leq k \)

For example, suppose that \(G \) is the following graph:

\[
\begin{array}{c|c|c|c}
 & 1 & 2 & 3 \\
\hline
1 & 3 \\
2 & 3 \\
3 & 3 & 4 \\
\end{array}
\]

Correctness

- The reduction is correct since the following two are equivalent:
 1. \(G \) has a clique of size at least \(k \)
 2. \(Q_k(I_G) = \text{true} \)

- Hence, determining whether \(Q(I) = \text{true} \), given \(S, Q \) and \(I \), is NP-hard

- Membership in NP is straightforward, hence, the problem is NP-complete

- Note: The schema \(S \) does not depend on the input \((G, k) \), but the size of \(Q \) is quadratic in \(k \)
What is the data complexity of answering a query in RA?

- We consider the problem $A_S Q$ of computing the answers for a query Q in RA (Relational Algebra) over a given input instance I over S.
- The naive way of straightforwardly executing Q runs in polynomial time.
 - What is the degree of the polynomial?
- As a special case, CQ evaluation is in polynomial time under data complexity.
 - Note that data complexity is insensitive to the representation of the query.

Under combined complexity, CQ evaluation is intractable:
- Boolean CQ evaluation is NP-complete.
 - The non-emptiness problem for CQ evaluation (i.e., is there at least one tuple in the result?) is NP-complete.
- Under data complexity, CQ evaluation is solvable in polynomial time.
 - That is, for every CQ Q there exists a polynomial-time algorithm A_Q to compute $Q(I)$ on a given instance I.
 - The naive way gives a polynomial running time where the degree depends on the query (next: Is it necessary?)

Parameterized complexity provides a yardstick of efficiency somewhere between data complexity and combined complexity.

Intuitively, we would like to have evaluation in polynomial time in the size of the database, but we allow the query to affect only the coefficient of the polynomial; not the degree of the polynomial.

This is formalized and explored in the framework of parameterized complexity:
- Where the parameter here is the size of the query.

Recall: a decision problem is a set of strings (representing problem instances).

A decision problem D is solvable in polynomial time if there exists an algorithm A and a polynomial p such that A:
- solves D (i.e., decides whether a given input string x is in D)
- terminates in at most $p(|x|)$ steps on every input x.

A parameterized decision problem is a set of pairs (x, k), where x is a string and k is a natural number—the parameter.

A parameterized decision problem D is Fixed Parameter Tractable, or FPT, if there exists an algorithm A, a (computable) function f and a polynomial p such that A:
- solves D (decides whether a given (x, k) is in D)
- terminates in at most $f(k) \cdot p(|x|)$ steps on every input (x, k), where f is computable and p is a polynomial.

Recall: a vertex cover is a set of nodes that hits all edges.

Why is this problem in polynomial time for every fixed k?
Parameterized Vertex Cover

Input: Graph g

Parameter: k

Goal: Determine whether there is a vertex cover of size k

FPT Algorithm

```
VertexCover($g, k$)
1  if $k < 0$ then
2     return false
3  if $k = 0$ and $g$ has no edges then
4     return true
5  select an arbitrary edge $e = \{u, v\}$;
6  if VertexCover($g - u, k - 1$) then
7     return true
8  if VertexCover($g - v, k - 1$) then
9     return true
10    return false
```

Why is this algorithm FPT?

Parameterized CQ Evaluation

Input: Boolean CQ Q, instance I

Parameter: Size of Q

Goal: Compute $Q(I)$

W[1]-Hardness of Boolean CQ Evaluation

Recall our reduction from maximum clique to Boolean CQ evaluation

$\begin{align*}
I_G = \begin{array}{|c|c|c|c|}
\hline
1 & 2 & 3 & 4 \\
\hline
\hline
1 & 3 & 2 & 4 \\
\hline
2 & 3 & 2 & 4 \\
\hline
3 & 4 & 2 & 4 \\
\hline
\end{array}
\end{align*}$

$Q_3(v) := R_E(X_1, X_2), R_E(X_1, X_3), R_E(X_2, X_3)$
In the reduction, the size of the CQ was determined only by \(k \).
In formal terms, our reduction is a so called FTP reduction.
Hence, Boolean CQ evaluation is W[1]-hard when the size of the CQ is the parameter.
Hence, no hope for FPT without further assumptions; the query necessarily determines the degree of the polynomial data complexity.

In this section we adopt the combined complexity, hence nothing is fixed.
Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.
Hence, no evaluation in polynomial time... But:
- What if on some instance there are just a few tuples?
- What about incremental evaluation (produce as much as we have time for)?
Input-output complexity measures the time as a function of both the input and the output.
Next, we make it more formal.

If \(S \) is a (possibly infinite) set, then we denote by \(P_{\text{fin}}(S) \) the set of all finite subsets of \(S \).

An enumeration problem \(E \) has an input space \(\text{In}(E) \), an output space \(\text{Out}(E) \), and it maps every input \(x \in \text{In}(E) \) into a finite subset \(E(x) \) of \(\text{Out}(E) \):
\[
E : \text{In}(E) \to P_{\text{fin}}(\text{Out}(E))
\]

Examples:
- \(\text{In}(E) \): pairs (query,instance); \(\text{Out}(E) \): tuples of values
- \(\text{In}(E) \): graphs; \(\text{Out}(E) \): node sets

Computational task for \(E \): Given \(x \in \text{In}(E) \), compute (or enumerate) the items of \(E(x) \).

Let \(E \) be an enumeration problem.
A solver for \(E \) is an algorithm \(A \) that, given \(x \in \text{In}(E) \), produces (or prints) a sequence of elements in \(\text{Out}(E) \) during its execution, and has the following properties:
- Soundness: every produced answer is in \(E(x) \).
- Completeness: every answer in \(E(x) \) is produced.
- Nonrepeating: no answer is produced more than once.
Complexity Measures

- Johnson, Papadimitriou and Yannakakis [JPY88] introduced several different notions of efficiency for enumeration algorithms.
- Let E be an enumeration problem, and let A be solver for E.
- **Polynomial total time**: the total execution time of A is polynomial in ($|x| + |E(x)|$).
- **Polynomial delay**: the time between every two successive outputs is polynomial in $|x|$.
- **Incremental polynomial time**: after producing N elements, the time to produce the next element is polynomial in $(|x| + N)$.

Example: Path CQ

- We now look at an example of an algorithm that enumerates in polynomial total time.
- **Problem**: evaluate a CQ of the following form over $R/2$:
 $$Q_n(x_1, \ldots, x_n) := R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n)$$
 - That is, compute all length-n paths of a given directed graph.
 - The directed graph is represented by an instance I over R.
 - Not necessarily simple paths.

First Attempt

```plaintext
1  A_2 := I;
2  for i = 3, \ldots, n do
3    /* Join previous with I */
4    A_i := \{ (a_1, a_2) | (a_1, a_2, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I \}; /* Print the output */
5  forall t \in A_n do
6    print t;
```

Given: Q_n, I Compute: $Q_n(I)$

$$Q_n(x_1, \ldots, x_n) := R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n)$$

Is the algorithm correct (sound, complete, nonrepeating)?

Does the algorithm guarantee polynomial total time?

Revised Algorithm

```plaintext
1  I_n := I;
2  for i = n - 1, \ldots, 2 do
3    I_i := \{ (a, b) \in I \mid \exists (b, c) \in I_{i+1} \}; /* semijoin */
4    /* Now join, as in the previous (slow) algorithm */
5  for i = 3, \ldots, n do
6    /* Join previous with $I_i$ */
7    A_i := \{ (a_1, \ldots, a_i) | (a_1, \ldots, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I_i \}; /* Print the output */
8  forall t \in A_n do
9    print t;
```

Given: Q_n, I Compute: $Q_n(I)$

Why is it correct? Is it polynomial time? Polynomial total time?
We have seen an algorithm for computing all the paths of a given length n in polynomial total time. What about all simple paths of length n? Problem: Deciding whether a graph g has a simple path of length n, given g and n, is NP-complete. Assuming $P \neq NP$, can there be an enumeration algorithm for all simple paths, of a given length, that runs in:
- Polynomial delay?
- Polynomial total time?

Let E be an enumeration problem. The emptiness problem for E is the following: Given $x \in \text{In}(E)$, is $E(x)$ empty? We say that E has tractable verification if:
1. Deciding whether $x \in \text{In}(E)$, given x, is in polynomial time.
2. Every $y \in E(x)$ is of length polynomial in that of x.
3. Deciding whether $y \in E(x)$, given x and y, is in polynomial time.
If E has tractable verification, then the emptiness problem of E is in coNP. Why?

Next, we will see an interesting example of a polynomial-delay algorithm. Let g be an undirected graph. Recall: a clique of g is a set C of nodes of g such that every two nodes in C are connected by an edge. A clique C is maximal if there is no clique C' such that $C \subset C'$. Do not mix with a maximum clique that has a maximal number of nodes among all cliques. Next, we will see a polynomial-delay algorithm for enumerating all maximal cliques of a graph.

Discussion on Enumerating Maximal Cliques
- What is the complexity of the emptiness problem?
- How would you generate one maximal clique?
- How would you generate two maximal cliques?
- How would you generate three maximal cliques?
- How would you generate n maximal cliques for a given n?

Proposition
Let E be an enumeration problem with tractable verification, and assume that $P \neq NP$. If the emptiness problem of E is coNP-complete, then E cannot be solved in polynomial total time.

Proof: discussion + home assignment

Example of Polynomial Delay

Generating a Single Max Clique

| C := \emptyset; |
| for all nodes v of g do |
| if v is connected to every node in C then |
| C := C \cup \{v\}; |
| return C |

Given: g Compute: a maximal clique

Why is the returned C a clique? Why maximal?
Maximizing a Clique

MaximizeClique\((g, B) \)

1. \(C := B; \)
2. \textbf{for} all nodes \(v \) of \(g \) do
3. \hspace{1em} \textbf{if} \(v \) is connected to every node in \(C \) then
4. \hspace{2em} \(C := C \cup \{v\}; \)
5. \textbf{return} \(C \);

Given: \(g, \) clique \(B \)
Compute: a max. clique \(C \) such that \(B \subseteq C \)

Correctness and Efficiency

- Why is the algorithm \textit{sound} (printing only maximal cliques)?
- Why is the algorithm \textit{nonrepeating}?\textit{?}
- Why is the algorithm running with \textit{polynomial delay}?\textit{?}
- Why is the algorithm \textit{complete}?\textit{?}

Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique \(D \) is not printed
- Let \(D' \) be a \textit{maximal subset} of \(D \) that is printed as part of some maximal clique, say \(C \)
- Let \(v \) be a node in \(D \setminus D' \)
 - \textit{Why does \(v \) exist?}\textit{?}
- Consider the iteration where \(C \) and \(v \) are selected
- In that iteration, \(B \) contains \(D' \cup \{v\} \)
- \(\ldots \) and \(C' \) contains \(B \), hence \(D' \cup \{v\} \)
- \(\ldots \) and \(C' \) is printed at some point
- Hence, a contradiction to our choice of \(D' \)

References

End of lecture 3

Querying Complexity