Principles of Managing Uncertain Data

Lecture 8: Consistent Query Answering
Table of Contents

1. **Introduction**

2. **Trichotomy Theorem**

3. **Attacks**

4. **Refined Trichotomy**

5. **FO Rewriting with SQL**
Many thanks to Jef Wijsen for helping with the slides!
Table of Contents

1 Introduction

2 Trichotomy Theorem

3 Attacks

4 Refined Trichotomy

5 FO Rewriting with SQL
Previous Lecture

- Defined *inconsistent databases* and *repairs*
- Defined *Consistent Query Answering* (CQA)
Defined *inconsistent databases* and *repairs*

Defined *Consistent Query Answering* (CQA)

Saw a schema with primary-key constraints and a CQ where:

- CQA can be translated into a formula in *First Order Logic* (FO) over the inconsistent instance
 - Hence, computable in polynomial time
- CQA is *coNP-hard*
- CQA *cannot be phrased in FO* over the inconsistent instance, but is still *computable in polynomial time*
We will focus on schemas with primary-key constraints, and CQs without self joins.

- That is, CQs where each relation occurs at most once.
We will focus on schemas with primary-key constraints, and CQs *without self joins*

- That is, CQs where each relation occurs at most once
- We will learn a recent result that shows how to distinguish between the three cases
This Lecture

- We will focus on schemas with primary-key constraints, and CQs without self joins
 - That is, CQs where each relation occurs at most once
- We will learn a recent result that shows how to distinguish between the three cases
- Such a result is called a *trichotomy*, since it classifies all cases into three pairwise-disjoint categories
We will focus on schemas with primary-key constraints, and CQs without self joins

- That is, CQs where each relation occurs at most once

We will learn a recent result that shows how to distinguish between the three cases

Such a result is called a trichotomy, since it classifies all cases into three pairwise-disjoint categories

We will see how to rewrite CQA into SQL in the case of FO rewritability
In this lecture, we consider only schemas $S = (R, \Sigma)$ such that
Σ consists of primary keys
In this lecture, we consider only schemas $\mathcal{S} = (\mathcal{R}, \Sigma)$ such that Σ consists of primary keys.

That is:

- For every relation name $R \in \mathcal{R}$ there is a unique key constraint $R : X \rightarrow Y$ in Σ.
- There are no other constraints in Σ.
In this lecture, we consider only schemas \(S = (R, \Sigma) \) such that \(\Sigma \) consists of primary keys.

That is:

- For every relation name \(R \in R \) there is a unique key constraint \(R : X \to Y \) in \(\Sigma \).
- There are no other constraints in \(\Sigma \).

Note: “no key” is the same as “left-hand side contains all attributes”.
In this lecture, we consider only schemas $S = (\mathcal{R}, \Sigma)$ such that Σ consists of primary keys.

That is:

- For every relation name $R \in \mathcal{R}$ there is a unique key constraint $R : X \rightarrow Y$ in Σ.
- There are no other constraints in Σ.

Note: “no key” is the same as “left-hand side contains all attributes”.

In our examples we underline the key attributes.

For instance, if \mathcal{R} contains $R(A, B, C, D)$ then $R(x, y, z, w)$ means that Σ contains the key constraint $R : AB \rightarrow CD$.
CQs without Self Joins

- Recall: a CQ over a signature \mathcal{R} is a query of the form:

$$Q(x) \leftarrow \exists y [\varphi_1(x, y) \land \cdots \land \varphi_k(x, y)]$$

where each $\varphi_k(x, y)$ is an atomic query

- Each φ_i is called an atom of Q
CQs without Self Joins

- Recall: a CQ over a signature \mathcal{R} is a query of the form:

$$Q(x) :- \exists y[\varphi_1(x, y) \land \cdots \land \varphi_k(x, y)]$$

where each $\varphi_k(x, y)$ is an atomic query

- Each φ_i is called an atom of Q

- We say that Q has no self joins if no two distinct atoms use the same relation name
CQs without Self Joins

- Recall: a CQ over a signature \mathcal{R} is a query of the form:

$$Q(x) : \exists y [\varphi_1(x, y) \land \cdots \land \varphi_k(x, y)]$$

where each $\varphi_k(x, y)$ is an atomic query

- Each φ_i is called an atom of Q

- We say that Q has no self joins if no two distinct atoms use the same relation name

- We say that Q is Boolean if x is empty; in that case, Q is either true or false on a given instance I
Definition (Consistent Answers)

Let $S = (\mathcal{R}, \Sigma)$ be a schema, Q a query over S, and I an inconsistent instance over S. A tuple a is a consistent answer if $a \in Q(J)$ for every repair J. We denote by $\text{Consistent}_{\Sigma}^Q(I)$ the set of all consistent answers. Hence, we have:

$$\text{Consistent}_{\Sigma}^Q(I) = \bigcap_{J \in \text{Repairs}_{\Sigma}(I)} Q(J)$$
Recalling Data Complexity

- Recall: in *data complexity* we fix the schema and query, and only the instance I is considered input.
Recalling Data Complexity

- Recall: in *data complexity* we fix the schema and query, and only the instance I is considered input.
- Effectively, every schema S and query Q define a separate computational problem $P_{S,Q}$.
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a CQ without self joins. Assume that $P \neq NP$. Then exactly one of the following is true.

1. Consistent $Q \Theta \Sigma$ can be formulated as a query in FO (hence, computable in polynomial time).
2. Consistent $Q \Theta \Sigma$ cannot be formulated as a query in FO, but is still computable in polynomial time.
3. Testing whether $\text{Consistent } Q \Theta \Sigma$ is empty is NP-complete. Moreover, we can compute in polynomial time (in S and Q) in which case we are.
The trichotomy theorem states that for a given schema $S = (R, \Sigma)$ where Σ consists of primary keys, and a CQ Q without self joins, under the assumption $P \neq NP$, exactly one of the following conditions holds:

1. $\exists_{\Sigma}Q$ can be formulated as a query in FO (hence, computable in polynomial time).
2. $\exists_{\Sigma}Q$ cannot be formulated as a query in FO, but is still computable in polynomial time.
3. Testing whether $\exists_{\Sigma}Q$ is empty is NP-complete.

Furthermore, in the case where $\exists_{\Sigma}Q$ is empty, we can compute it in polynomial time in S and Q.
Theorem \([KW15]\]

Let \(S = (R, \Sigma) \) be a schema, such that \(\Sigma \) consists of primary keys. Let \(Q \) be a CQ without self joins. Assume that \(P \neq \text{NP} \). Then exactly one of the following is true.

1. \(\text{Consistent}^{Q}_{\Sigma} \) can be formulated as a query in FO (hence, computable in polynomial time).
2. \(\text{Consistent}^{Q}_{\Sigma} \) cannot be formulated as a query in FO, but is still computable in polynomial time.
Theorem [KW15]

Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a CQ without self joins. Assume that $P \neq NP$. Then exactly one of the following is true.

1. $\text{Consistent}^Q_\Sigma$ can be formulated as a query in FO (hence, computable in polynomial time).

2. $\text{Consistent}^Q_\Sigma$ cannot be formulated as a query in FO, but is still computable in polynomial time.

3. Testing whether $\text{Consistent}^Q_\Sigma$ is empty is NP-complete.
The Trichotomy Theorem states that for a given schema \(S = (R, \Sigma) \) such that \(\Sigma \) consists of primary keys, and a CQ without self joins \(Q \), under the assumption that \(P \neq NP \), exactly one of the following is true:

1. \(\text{Consistent}_Q^\Sigma \) can be formulated as a query in \(\text{FO} \) (hence, computable in polynomial time).
2. \(\text{Consistent}_Q^\Sigma \) cannot be formulated as a query in \(\text{FO} \), but is still computable in polynomial time.
3. Testing whether \(\text{Consistent}_Q^\Sigma \) is empty is \(\text{NP-complete} \).

Moreover, we can compute in polynomial time (in \(S \) and \(Q \)) in which case we are.
2005: Fuxman and Miller [FM05] claim a dichotomy for a class of conjunctive queries without self joins
 ▪ A flaw in their proof and result discovered by Wijsen [Wij10b]
2010: Wijsen [Wij10a] establishes a dichotomy in FO rewritability for *acyclic CQs without self joins*
2012: Kolaitis and Pema [KP12] prove a dichotomy (P vs coNP-complete) for *CQs with two atoms and no self joins*
2013: Fontaine [Fon13] establishes an explanation on why it is difficult to establish dichotomies for (U)CQs with self joins. Basically, it entails solving a long standing open problem.

2014: Koutris and Suciu [KS14] prove a dichotomy for CQs without self joins, where every relation is binary (with a key).

2015: Koutris and Wijsen [KW15] prove a trichotomy for all CQs without self joins. That is, the trichotomy we learn here.
Table of Contents

1. Introduction
2. Trichotomy Theorem
3. Attacks
4. Refined Trichotomy
5. FO Rewriting with SQL
Throughout this section, we fix a schema $\mathcal{S} = (\mathcal{R}, \Sigma)$ and a CQ Q.
Throughout this section, we fix a schema $S = (\mathcal{R}, \Sigma)$ and a CQ Q

- Σ consists of primary keys (one for each relation)
- Q has no self joins
Throughout this section, we fix a schema $S = (\mathcal{R}, \Sigma)$ and a CQ Q

- Σ consists of primary keys (one for each relation)
- Q has no self joins

Recall that for such Σ, a *repair* is a maximal consistent subset of I
Throughout this section, we fix a schema $S = (R, \Sigma)$ and a CQ Q:

- Σ consists of primary keys (one for each relation)
- Q has no self joins

Recall that for such Σ, a repair is a maximal consistent subset of I.

We first assume that Q is Boolean (that is, there are no variables in the head).

Hence, the goal is to determine whether Q is true in every repair.
We denote by:

- $\text{Atoms}(Q)$ the set of atoms of Q
- $\text{Var}(Q)$ the set of all the variables of Q
- α_R the atom of Q over the relation name R
- R_α the relation name of the atom α
Notation

- We denote by:
 - \(\text{Atoms}(Q) \) the set of atoms of \(Q \)
 - \(\text{Var}(Q) \) the set of all the variables of \(Q \)
 - \(\alpha_R \) the atom of \(Q \) over the relation name \(R \)
 - \(R_\alpha \) the relation name of the atom \(\alpha \)
- For \(\alpha \in \text{Atoms}(Q) \), we denote by:
 - \(\text{Var}(\alpha) \) the variables that occur in \(\alpha \)
 - \(\text{KVar}(\alpha) \) the variables that occur in key attributes of \(R_\alpha \)
Example

\[Q() \models R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
Example

\[Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

\[\text{Atoms}(Q) = \{R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)\} \]
Example

\[Q() \text{ :- } R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \text{Atoms}(Q) = \{ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \}
- \text{Var}(Q) = \{ x, y, z, w, u \}
Example

\[Q() :- R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{Atoms}(Q) = \{R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)\} \)
- \(\text{Var}(Q) = \{x, y, z, w, u\} \)
- \(\alpha_S = S(x, z, w) \)
Example

\[Q() :− R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- Atoms\((Q) = \{ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \} \)
- \(\text{Var}(Q) = \{ x, y, z, w, u \} \)
- \(\alpha_S = S(x, z, w) \)
- \(\alpha = \alpha_R = R(x, a, y) \Rightarrow R_\alpha = R, \text{Var}(\alpha) = \{ x, y \}, \text{KVar}(\alpha) = \{ x \} \)
Example

\[Q() :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{Atoms}(Q) = \{R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)\} \)
- \(\text{Var}(Q) = \{x, y, z, w, u\} \)
- \(\alpha_S = S(x, z, w) \)
- \(\alpha = \alpha_R = R(x, a, y) \Rightarrow R_\alpha = R, \ Var(\alpha) = \{x, y\}, \ KVar(\alpha) = \{x\} \)
- \(\alpha = S(x, z, w) \Rightarrow R_\alpha = S, \ Var(\alpha) = \{x, z, w\}, \ KVar(\alpha) = \{x\} \)
Example

\[Q() :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- Atoms\((Q) \) = \{R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)\}
- Var\((Q) \) = \{x, y, z, w, u\}
- \(\alpha_S = S(x, z, w) \)
- \(\alpha = \alpha_R = R(x, a, y) \Rightarrow R_\alpha = R, \ Var(\alpha) = \{x, y\}, \ KVar(\alpha) = \{x\} \)
- \(\alpha = S(x, z, w) \Rightarrow R_\alpha = S, \ Var(\alpha) = \{x, z, w\}, \ KVar(\alpha) = \{x\} \)
- We denote constants by non-italic letters from the beginning of the alphabet (e.g., a and b), as opposed to variables (e.g., x and y)
We define the following set of functional dependencies (FDs):

\[\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \} \]
FDs among Variables

- We define the following set of functional dependencies (FDs):

\[
\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \}
\]

- \(\text{FD}^+(Q)\) denotes the set of all FDs over \(\text{Var}(Q)\) that are logically implied from \(\text{FD}(Q)\)
We define the following set of functional dependencies (FDs):

\[\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \} \]

- \(\text{FD}^+(Q) \) denotes the set of all FDs over \(\text{Var}(Q) \) that are logically implied from \(\text{FD}(Q) \)
- Equivalently (by Armstrong’s axioms), \(\text{FD}^+(Q) \) is obtained from \(\text{FD}(Q) \) by repeatedly applying the following rules:
FDs among Variables

- We define the following set of functional dependencies (FDs):

\[\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \} \]

- \(\text{FD}^+(Q) \) denotes the set of all FDs over \(\text{Var}(Q) \) that are logically implied from \(\text{FD}(Q) \)

- Equivalently (by Armstrong’s axioms), \(\text{FD}^+(Q) \) is obtained from \(\text{FD}(Q) \) by repeatedly applying the following rules:
 - \(X \rightarrow X' \) whenever \(X' \subseteq X \) (reflexivity)
Introduction
Trichotomy Theorem
Attacks
Refined Trichotomy
FO Rewriting with SQL
References

FDs among Variables

- We define the following set of functional dependencies (FDs):

\[
\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \}
\]

- \(\text{FD}^+(Q)\) denotes the set of all FDs over \(\text{Var}(Q)\) that are logically implied from \(\text{FD}(Q)\)

- Equivalently (by Armstrong’s axioms), \(\text{FD}^+(Q)\) is obtained from \(\text{FD}(Q)\) by repeatedly applying the following rules:
 - \(X \rightarrow X'\) whenever \(X' \subseteq X\) (reflexivity)
 - If \(X \rightarrow Y\) and \(Y \rightarrow Z\), then \(X \rightarrow Z\) (transitivity)
FDs among Variables

- We define the following set of functional dependencies (FDs):

\[
FD(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \}
\]

- \(FD^+(Q)\) denotes the set of all FDs over \(\text{Var}(Q)\) that are logically implied from \(FD(Q)\)

- Equivalently (by Armstrong’s axioms), \(FD^+(Q)\) is obtained from \(FD(Q)\) by repeatedly applying the following rules:
 - \(X \rightarrow X'\) whenever \(X' \subseteq X\) (reflexivity)
 - If \(X \rightarrow Y\) and \(Y \rightarrow Z\), then \(X \rightarrow Z\) (transitivity)
 - If \(X \rightarrow Y\), then \(X \cup Z \rightarrow Y \cup Z\) (augmentation)
Example

\[Q() \setminus R(\underline{x, a, y}), S(\underline{x, z, w}), T(\underline{z, y, u}), U(\underline{b, z}) \]

- \(\text{FD}(Q) = \{ x \rightarrow y, x \rightarrow zw, zy \rightarrow u, \emptyset \rightarrow z \} \)
Example

\[Q() \triangleq R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{FD}(Q) = \{ x \rightarrow y, x \rightarrow zw, yz \rightarrow u, \emptyset \rightarrow z \} \)
- \(\text{FD}^+(Q) = \{ x \rightarrow yzwu, y \rightarrow zu, u \rightarrow u, \ldots \} \cup \text{FD}(Q) \)
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an **external dependent** of α if x is determined from the key of α even without α; that is:

$$(K\text{Var}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$\left(\text{KVar}(\alpha) \rightarrow x \right) \in \text{FD}^+(Q \setminus \{\alpha\})$$

Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.

Example:

Q:

$R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$

Which variables are external dependents of α_R?

x, z, w

Which variables are external dependents of α_S?

x, y, z, u

If x is not an external dependent of α, then we say that x is externally independent of α.

External Dependency

- For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$\left(\text{KVar}(\alpha) \rightarrow x\right) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α
- Example: $Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
External Dependency

- For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$\left(K\text{Var}(\alpha) \rightarrow x\right) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in K\text{Var}(\alpha)$ is an external dependent of α
- Example: $Q() :- R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - Which variables are external dependents of α_R?
External Dependency

- For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$(K\text{Var}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in K\text{Var}(\alpha)$ is an external dependent of α
- Example: $Q() :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - Which variables are external dependents of α_R? x, z, w
External Dependency

- For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an *external dependent* of α if x is determined from the key of α even without α; that is:

$$\left(\text{KVar}(\alpha) \rightarrow x \right) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α

- Example: $Q() :- R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - *Which variables are external dependents of α_R?* x, z, w
 - *Which variables are external dependents of α_S?*
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an *external dependent* of α if x is determined from the key of α even without α; that is:

$$(\text{KVar}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$

Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.

Example: $Q() : - R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$

- Which variables are external dependents of α_R? x, z, w
- Which variables are external dependents of α_S? x, y, z, u
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an *external dependent* of α if x is determined from the key of α even without α; that is:

$$(\text{KVar}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$

Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.

Example: $Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$

- Which variables are external dependents of α_R? x, z, w
- Which variables are external dependents of α_S? x, y, z, u

If x is not an external dependent of α, then we say that x is *externally independent* of α.
Let α and γ be two distinct atoms of Q

- We say that α **attacks** γ if there is a sequence β_1, \ldots, β_n of atoms such that:
Let α and γ be two distinct atoms of Q

- We say that α **attacks** γ if there is a sequence β_1, \ldots, β_n of atoms such that:
 - $\alpha = \beta_1$ and $\beta_n = \gamma$
Let α and γ be two distinct atoms of Q

We say that α attacks γ if there is a sequence β_1, \ldots, β_n of atoms such that:

- $\alpha = \beta_1$ and $\beta_n = \gamma$
- Every $\text{Var}(\beta_i) \cap \text{Var}(\beta_{i+1})$ contains at least one variable that is externally independent of α
If \(\beta \) and \(\gamma \) are atoms, then we denote by \(\beta \xrightarrow{\cdot \cdot \cdot} \gamma \) the fact that \(x \) is a variable in \(\text{Var}(\beta) \cap \text{Var}(\gamma) \) that is externally independent of \(\alpha \).
If β and γ are atoms, then we denote by $\beta \xrightarrow{x} R \gamma$ the fact that x is a variable in $\text{Var}(\beta) \cap \text{Var}(\gamma)$ that is externally independent of α_R.

Hence, α attacks γ if and only if there exists a sequence

$$\beta_1 \xrightarrow{x_1} R \beta_2 \xrightarrow{x_2} R \cdots \xrightarrow{x_{n-1}} R \beta_n$$

where $\beta_1 = \alpha$, $R = R_{\alpha}$, and $\beta_n = \gamma$.
Examples

\[Q() \equiv R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
Examples

\[Q() \triangleq R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(R(x, a, y) \) attacks \(T(z, y, u) \):

 \[R(x, a, y) \rightarrow^R T(z, y, u) \]
Examples

\[Q() \ := \ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(R(x, a, y) \) attacks \(T(z, y, u) \):
 \[R(x, a, y) \sim_R T(z, y, u) \]

- \(U(b, z) \) attacks all other atoms:
 \[U(b, z) \sim_U S(x, z, w) \sim_U R(x, a, y) \sim_U T(z, y, u) \]
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise
Weak and Strong Attack

If α attacks γ then we say that:

- α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
- α strongly attacks γ otherwise

Example: $Q() \models R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise

- Example: $Q() : R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - $R(x, a, y)$ weakly attacks $T(z, y, u)$
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise

- Example: $Q() :− R(\underline{x}, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - $R(\underline{x}, a, y)$ weakly attacks $T(\underline{z}, y, u)$
 - $U(b, z)$ strongly attacks all other atoms
The attack graph of Q is the directed graph $G = (V, E)$ where:

- V is $\text{Atoms}(Q)$
- There is an edge (α, γ) whenever α attacks γ
The **attack graph** of Q is the directed graph $G = (V, E)$ where:

- V is $\text{Atoms}(Q)$
- There is an edge (α, γ) whenever α attacks γ

An edge (α, γ) is:

- **weak** if α weakly attacks γ (i.e., $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$)
- **strong** if α strongly attacks γ
$Q() \vdash R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
Table of Contents

1 Introduction
2 Trichotomy Theorem
3 Attacks
4 Refined Trichotomy
5 FO Rewriting with SQL
Theorem [KW15]

Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if $\text{Consistent}_{Q, \Sigma}$ is expressible in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}_{Q, \Sigma}$ can be computed in polynomial time.
3. If G has a cycle with a strong edge, then it is coNP-complete to decide whether $\text{Consistent}_{Q, \Sigma}$ is true on a given instance.
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if $\text{Consistent}_{\Sigma}^Q$ is expressible in FO.
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if $\text{Consistent}^Q_\Sigma$ is expressible in FO.

2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}^Q_\Sigma$ can be computed in polynomial time.
Refined Trichotomy (Boolean case)

Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if $\text{Consistent}^Q_{\Sigma}$ is expressible in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}^Q_{\Sigma}$ can be computed in polynomial time.
3. If G has a cycle with a strong edge, then it is coNP-complete to decide whether $\text{Consistent}^Q_{\Sigma}$ is true on a given instance.
Example 1

\[Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
Example 1

\[Q() :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

\[\Rightarrow \text{in FO} \]
Example 2

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>
Example 2

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?
Example 2

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() :\neg \text{LC}(x, y), \text{CT}(y, z) \]
Example 2

\[\text{LC(lecturer, course)} \quad \text{CT(course, ta)} \]

\[
\begin{array}{c|c}
\text{lecturer} & \text{course} \\
\hline
\text{course} & \text{ta}
\end{array}
\]

Query: Does any course have both a lecturer and a TA?

\[Q() \leftarrow \text{LC}(x, y), \text{CT}(y, z) \]

Diagram:

- \(\text{LC}(x, y) \)
- \(\text{CT}(y, z) \)

Relationship: \(\text{LC}(x, y) \rightarrow \text{CT}(y, z) \)
Example 2

\[
\text{LC(lecturer, course)} \quad | \quad \text{CT(course, ta)}
\]

\[
\text{lecturer} \rightarrow \text{course} \quad | \quad \text{course} \rightarrow \text{ta}
\]

Query: Does any course have both a lecturer and a TA?

\[
Q() := \text{LC}(x, y), \text{CT}(y, z)
\]

\[
\text{LC}(x, y) \quad \Rightarrow \quad \text{CT}(y, z)
\]

\[
\Rightarrow \text{in FO}
\]
Example 3

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>TC(ta, course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>ta → course</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?
Example 3

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>TC(ta, course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>ta → course</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() \leftarrow \text{LC}(x, y), \text{TC}(x', y) \]
Example 3

Query: Does any course have both a lecturer and a TA?

\[
Q() :\neg \text{LC}(x, y), \text{TC}(x', y)
\]
Example 3

Query: Does any course have both a lecturer and a TA?

\[Q() :\neg \text{LC}(x, y), \text{TC}(x', y) \]

\[\Rightarrow \text{coNP-complete} \]
Example 4

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have the same lecturer and TA?
Example 4

<table>
<thead>
<tr>
<th>LC(lecture, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have the same lecturer and TA?

\[Q() :\neg \text{LC}(x, y), \text{CT}(y, x) \]

\[
\text{LC}(x, y) \quad \text{CT}(y, x)
\]
Example 4

\[
\begin{array}{c|c}
\text{LC(lecturer, course)} & \text{CT(course, ta)} \\
\text{lecturer} \rightarrow \text{course} & \text{course} \rightarrow \text{ta}
\end{array}
\]

Query: Does any course have the same lecturer and TA?

\[
Q() \leftarrow \text{LC}(x, y), \text{CT}(y, x)
\]

⇒ not in FO, but in polynomial time
To extend the trichotomy to non-Boolean CQs, we need some notation.
To extend the trichotomy to non-Boolean CQs, we need some notation.

- If x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x\rightarrow a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i.

To extend the trichotomy to non-Boolean CQs, we need some notation. If x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x\to a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i. If x_i is a head variable, then we remove x_i from the head.
Generalized Trichotomy (non-Boolean case)

Theorem [KW15]

Let \(S = (R, \Sigma) \) be a schema, such that \(\Sigma \) consists of primary keys. Let \(Q(x) \) be a CQ without self joins (where \(x \) is the sequence of head variables). Let \(Q_b \) be the Boolean CQ \(Q[x \rightarrow a] \) for some tuple \(a \) of constants, and let \(G \) be the attack graph of \(Q_b \).
Generalized Trichotomy (non-Boolean case)

Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x\rightarrow a]$ for some tuple a of constants, and let G be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent} \frac{Q}{\Sigma}$ is equivalent to some $\varphi(x)$ in FO.
Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x \rightarrow a]$ for some tuple a of constants, and let G be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent}^Q_{\Sigma}$ is equivalent to some $\varphi(x)$ in FO.

2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}^Q_{\Sigma}$ can be evaluated in polynomial time.
Generalized Trichotomy (non-Boolean case)

THEOREM [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x \rightarrow a]$ for some tuple a of constants, and let G be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent}^{Q}_{\Sigma}$ is equivalent to some $\varphi(x)$ in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}^{Q}_{\Sigma}$ can be evaluated in polynomial time.
3. If G has a cycle with a strong edge, then non-emptiness of $\text{Consistent}^{Q}_{\Sigma}$ is coNP-complete.
Example

\[Q(y) : \neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
Example

\[Q(y) := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

\[\downarrow \]

\[Q'(\cdot) := R(x, a, c), S(x, z, w), T(z, c, u), U(b, z) \]
Example

\[Q(y) : \neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

\[\downarrow \]

\[Q'(\cdot) : \neg R(x, a, c), S(x, z, w), T(z, c, u), U(b, z) \]
Example

\[Q(y) :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

\[\downarrow \]

\[Q'(_): R(x, a, _), S(x, z, w), T(z, _c, u), U(b, z) \]

\[\Rightarrow \text{in FO} \]
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Trichotomy Theorem</td>
</tr>
<tr>
<td>3</td>
<td>Attacks</td>
</tr>
<tr>
<td>4</td>
<td>Refined Trichotomy</td>
</tr>
<tr>
<td>5</td>
<td>FO Rewriting with SQL</td>
</tr>
</tbody>
</table>
Problem Definition

- Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
Problem Definition

- Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
- Given: a CQ Q over R such that
 - Q has no self joins (i.e., no relation name occurs more than once)
 - The attack graph of Q is acyclic
Problem Definition

- Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name).
- Given: a CQ Q over \mathcal{R} such that
 - Q has no self joins (i.e., no relation name occurs more than once)
 - The attack graph of Q is acyclic
- Goal: Compute an SQL query Q_{cqa} over \mathcal{R}, such that for every inconsistent instance I we have:

$$\text{Consistent}_\Sigma^Q(I) = Q_{\text{cqa}}(I)$$
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$.
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$

- If $\alpha \in \text{Atoms}(Q)$, then $Q^{-\alpha}$ is the CQ obtained from Q by removing α
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$.
- If $\alpha \in \text{Atoms}(Q)$, then $Q^{-\alpha}$ is the CQ obtained from Q by removing α.
- Recall: if x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x \rightarrow a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i.
We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$.

If $\alpha \in \text{Atoms}(Q)$, then $Q^{-\alpha}$ is the CQ obtained from Q by removing α.

Recall: if x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x \rightarrow a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i.

It may be the case that Q does not contain some of the x_i.
Lemma [KW15]

Let $S = (R, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

1. Q is consistent (i.e., true on every repair of) over I.
2. For some $\alpha(a, b) \in I$, the CQ $Q[x \rightarrow a]$ is consistent over I.
3. There is a fact $f = \alpha(a, b) \in I$ such that: for all facts g of R_α with the key of f there is c such that: (1) $g = \alpha(a, c)$, and (2) $Q - \alpha[(x, y) \rightarrow (a, c)]$ is consistent over I.

Lemma [KW15]

Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self-joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

- Q is consistent (i.e., true on every repair of) over I.

Key Lemma
Key Lemma

Lemma [KW15]

Let $S = (R, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

- Q is consistent (i.e., true on every repair of) over I.
- For some $\alpha(a, b) \in I$, the CQ $Q[x \rightarrow a]$ is consistent over I.
Lemma [KW15]

Let \(S = (R, \Sigma) \) be a schema where \(\Sigma \) consists of primary keys. Let \(Q \) be a Boolean CQ without self joins, and \(I \) an inconsistent instance. Let \(\alpha(x, y) \) be an atom without incoming edges in the attack graph of \(Q \). The following are equivalent.

- \(Q \) is consistent (i.e., true on every repair of) over \(I \).
- For some \(\alpha(a, b) \in I \), the CQ \(Q[x \rightarrow a] \) is consistent over \(I \).
- There is a fact \(f = \alpha(a, b) \in I \) such that: for all facts \(g \) of \(R_\alpha \) with the key of \(f \) there is \(c \) such that: (1) \(g = \alpha(a, c) \), and (2) \(Q^{-\alpha}[(x,y) \rightarrow (a,c)] \) is consistent over \(I \).
Lemma [KW15]

Let $S = (R, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins and with an acyclic attack graph. Let $\alpha(x,y)$ be an atom without incoming edges in the attack graph of Q. For every $\alpha(a,c) \in I$, the CQ $Q - \alpha[x \rightarrow (a,c)]$ has an acyclic attack graph.
Another Lemma

Lemma [KW15]

Let \(S = (\mathcal{R}, \Sigma) \) be a schema where \(\Sigma \) consists of primary keys. Let \(Q \) be a Boolean CQ without self joins and with an acyclic attack graph. Let \(\alpha(x, y) \) be an atom without incoming edges in the attack graph of \(Q \). For every \(\alpha(a, c) \in I \), the CQ \(Q^{-\alpha}_{(x, y) \rightarrow (a, c)} \) has an acyclic attack graph.
Setup

- We denote Q as the following SQL query:

```
SELECT X FROM R WHERE AC AND TC
```

- Where:
 - R is a sequence R_1,\ldots,R_m of relation names
 - X is a sequence of variables of the form $R_i.A$
 - A is an attribute of R
 - AC is a conjunction of conditions of the form $R_i.A = R_j.B$
 - TC is a conjunction of conditions of the form $R_i.A = t$ where t is some term (initially a constant)
For a counter l, we denote by

- \mathbf{R}^l the sequence obtained from \mathbf{R} by replacing each R_i with "$R_i R_l^i$" (i.e., naming R_i by R_l^i)
- \mathbf{X}^l the sequence obtained from \mathbf{X} by replacing each $R_i.A$ with $R_l^i.A$
- \mathbf{AC}^l the conjunction obtained from \mathbf{AC} by replacing each $R_i.A = R_j.B$ with $R_l^i.A = R_l^j.B$
- \mathbf{TC}^l the conjunction obtained from \mathbf{TC} by replacing each $R_i.A = t$ with $R_l^i.A = t$
More Notation

- If \mathbf{R}' is a subsequence of \mathbf{R}, then we denote by
 - $A\mathbf{C} \cap R'$ the restriction of $A\mathbf{C}$ to those $R_i.A = R_j.B$ where $R_i \in \mathbf{R}'$ and $R_j \in \mathbf{R}'$
 - $T\mathbf{C} \cap R'$ the restriction of $A\mathbf{C}$ to those $R_i.A = t$ where $R_i \in \mathbf{R}'$
Selecting a Non-Attacked Atom

- Let α be a non-attacked atom (i.e., α has no incoming edges in the attack graph), and let $R = R_\alpha$
Let α be a non-attacked atom (i.e., α has no incoming edges in the attack graph), and let $R = R_\alpha$

- Denote by:
 - $K = R.A_1, \ldots, R.A_k$ the key attributes of R
 - $V = R.B_1, \ldots, R.B_q$ the non-key attributes of R_i
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of \(\mathbf{X} \)

```
SELECT 'true' FROM \( R \) WHERE AC AND TC
```
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of X

\[
\text{SELECT 'true' FROM } R \text{ WHERE } AC \text{ AND } TC
\]

- We create the rewriting $\text{Rewrite}(R, AC, TC)$:

\[
\text{SELECT 'true' FROM } R \ R^1 \text{ WHERE }
\text{NOT EXISTS (}
\text{SELECT 'true' FROM } R \ R^2 \text{ WHERE } K^2 = K^1 \text{ AND NOT (}
\text{(} AC^2 \cap \{ R^2 \} \text{ AND } TC^2 \cap \{ R^2 \} \text{) AND}
\text{EXISTS(} \text{Rewrite}(R', AC \cap R', TC') \text{) })
\text{))}
\]
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of \(X \)

```sql
SELECT 'true' FROM R WHERE AC AND TC
```

- We create the rewriting \(\text{Rewrite}(R, AC, TC) \):

```sql
SELECT 'true' FROM R R^1 WHERE
NOT EXISTS ( SELECT 'true' FROM R R^2 WHERE K^2 = K^1 AND NOT
( ( AC^2 \cap \{ R^2 \} AND TC^2 \cap \{ R^2 \} ) AND
EXISTS(\text{Rewrite}(R^', AC \cap R^', TC') ) )
)
```

- \(R' \) is obtained from \(R \) by removing \(R \)
- \(TC' \) is obtained from \(TC \cap R' \) by adding \(R_k.A = R^2.B \) for every condition in \(AC \) of the form \(R_k.A = R.B \) or \(R.B = R_k.A \) where \(R_k \neq R \)
Example 1

$$\text{LC}(Ax, Ay); \text{CT}(Ay, Az) \quad Q() :\text{LC}(x, y), \text{CT}(y, z)$$

$$\text{SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay}$$

AC
Example 1

SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay

\[
\text{AC}
\]

SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT EXISTS (SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (SELECT 'true' FROM CT CT2 WHERE CT2.Ay=CT1.Ay AND NOT (CT2.Ay = LC2.Ay))))
Example 1

```
SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay
```

```
SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (
    SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT
    (EXISTS(
        SELECT 'true' FROM CT WHERE CT.Ay = LC2.Ay
    )))
```
Example 2

\[\text{LC}(Ax, Ay); \text{CT}(Ay, Az) \]

\[Q() \leftarrow \text{LC}(x, y), \text{CT}(y, \text{Avi}) \]

\[\text{SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay AND CT.Az='Avi'} \]

\[\text{AC AND CT} \]
Example 2

\[
\text{SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay AND CT.Az='Avi'} \quad \text{AC} \quad \text{TC}
\]

\[
\text{SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (}
\text{SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT}
\text{EXISTS(}
\text{SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (}
\text{SELECT 'true' FROM CT CT2 WHERE}
\text{CT2.Ay=CT1.Ay AND NOT (}
\text{CT2.Ay = LC2.Ay AND CT2.Az = 'Avi')}
\text{))}
\text{))}
\]
Non-Boolean Case

\[
\text{SELECT } X \text{ FROM } R \text{ WHERE } AC \text{ AND } TC
\]
Non-Boolean Case

\[
\text{SELECT } X \text{ FROM } R \text{ WHERE } AC \text{ AND } TC
\]

\[\Downarrow\]

\[
\text{SELECT } X^0 \text{ FROM } R^0 \text{ WHERE EXISTS (Rewrite}(R, AC, TC')\))
\]

TC' is obtained from TC by adding $R_i.A = R_i^0.A$ for every $R_i.A$ in X.
Example 3

\[\text{LC}(Ax, Ay) ; \text{CT}(Ay, Az) \quad Q(z) : \neg \text{LC}(x, y), \text{CT}(y, z) \]

\[\begin{array}{c}
\text{LC}(x, y) \\
\end{array} \quad \begin{array}{c}
\quad \text{CT}(y, z)
\end{array} \]

\[
\text{SELECT CT.Az FROM LC, CT WHERE LC.Ay=CT.Ay}
\]

\[A^C \]
Example 3

$$\text{SELECT CT.Az FROM LC, CT WHERE LC.Ay} = \text{CT.Ay}$$

$$\text{AC}$$

$$\text{SELECT CT0.Az FROM LC LC0, CT CT0 WHERE EXISTS(}
\text{SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (}
\text{SELECT 'true' FROM LC LC2 WHERE LC2.Ax} = \text{LC1.Ax AND NOT EXISTS(}
\text{SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (}
\text{SELECT 'true' FROM CT CT2 WHERE CT2.Ay} = \text{CT1.Ay AND NOT (CT2.Ay = LC2.Ay AND CT2.Az} = \text{CT0.Az)}
\text{))))}$$

End of lecture 8

Consistent Query Answering