Principles of Managing Uncertain Data

Lecture 8: Consistent Query Answering

Acknowledgment

Many thanks to Jef Wijsen for helping with the slides!

Previous Lecture

- Defined inconsistent databases and repairs
- Defined Consistent Query Answering (CQA)
- Saw a schema with primary-key constraints and a CQ where:
 - CQA can be translated into a formula in First Order Logic (FO) over the inconsistent instance
 - Hence, computable in polynomial time
 - CQA is coNP-hard
 - CQA cannot be phrased in FO over the inconsistent instance, but is still computable in polynomial time

This Lecture

- We will focus on schemas with primary-key constraints, and CQs without self joins
 - That is, CQs where each relation occurs at most once
- We will learn a recent result that shows how to distinguish between the three cases
- Such a result is called a trichotomy, since it classifies all cases into three pairwise-disjoint categories
- We will see how to rewrite CQA into SQL in the case of FO rewritability
In this lecture, we consider only schemas \(S = (R, \Sigma) \) such that \(\Sigma \) consists of primary keys.

That is:

- For every relation name \(R \in R \) there is a unique key constraint \(R : X \rightarrow Y \) in \(\Sigma \)
- There are no other constraints in \(\Sigma \)

Note: “no key” is the same as “left-hand side contains all attributes”.

In our examples we underline the key attributes.

For instance, if \(R \) contains \(R(A, B, C, D) \) then \(R(x, y, z, w) \) means that \(\Sigma \) contains the key constraint \(R : AB \rightarrow CD \).

Recalling Data Complexity

Recall: in data complexity we fix the schema and query, and only the instance \(I \) is considered input.

Effectively, every schema \(S \) and query \(Q \) define a separate computational problem \(P_{S, Q} \).

Consistent Answers

Definition (Consistent Answers)

Let \(S = (R, \Sigma) \) be a schema, \(Q \) a query over \(S \), and \(I \) an inconsistent instance over \(S \). A tuple \(a \) is a consistent answer if \(a \in Q(J) \) for every repair \(J \). We denote by \(\text{Consistent}^Q_{\Sigma}(I) \) the set of all consistent answers. Hence, we have:

\[
\text{Consistent}^Q_{\Sigma}(I) = \bigcap_{J \in \text{Repairs}_{\Sigma}(I)} Q(J)
\]

Trichotomy Theorem

Theorem [KW15]

Let \(S = (R, \Sigma) \) be a schema, such that \(\Sigma \) consists of primary keys.

Let \(Q \) be a CQ without self joins. Assume that \(\text{P} \neq \text{NP} \). Then exactly one of the following is true.

- \(\text{Consistent}^Q_{\Sigma}(I) \) can be formulated as a query in \(\text{FO} \) (hence, computable in polynomial time).
- \(\text{Consistent}^Q_{\Sigma}(I) \) cannot be formulated as a query in \(\text{FO} \), but is still computable in polynomial time.
- Testing whether \(\text{Consistent}^Q_{\Sigma}(I) \) is empty is \(\text{NP}-\text{complete} \).

Moreover, we can compute in polynomial time (in \(S \) and \(Q \)) in which case we are.
Historical Notes I

- 2005: Fuxman and Miller [FM05] claim a dichotomy for a class of conjunctive queries without self joins
 - A flaw in their proof and result discovered by Wijsen [Wij10b]
- 2010: Wijsen [Wij10a] establishes a dichotomy in FO rewritability for acyclic CQs without self joins
- 2012: Kolaitis and Pema [KP12] prove a dichotomy (P vs coNP-complete) for CQs with two atoms and no self joins

Historical Notes II

- 2013: Fontaine [Fon13] establishes an explanation on why it is difficult to establish dichotomies for (U)CQs with self joins
 - Basically, it entails solving a long standing open problem
- 2014: Koutris and Suciu [KS14] prove a dichotomy for CQs without self joins, where every relation is binary (with a key)
- 2015: Koutris and Wijsen [KW15] prove a trichotomy for all CQs without self joins
 - That is, the trichotomy we learn here

Setup

- Throughout this section, we fix a schema $S = (R, \Sigma)$ and a CQ Q
 - Σ consists of primary keys (one for each relation)
 - Q has no self joins
 - Recall that for such Σ, a repair is a maximal consistent subset of I
 - We first assume that Q is Boolean (that is, there are no variables in the head)
 - Hence, the goal is to determine whether Q is true in every repair

Example

Let $Q() := R(x, a, y), S(z, w), T(z, y, u), U(b, z)$

- $\text{Atoms}(Q) = \{ R(x, a, y), S(z, w), T(z, y, u), U(b, z) \}$
- $\text{Var}(Q) = \{ x, y, z, w, u \}$
- $\alpha_S = S(z, w)$
- $\alpha = \alpha_S = R(x, a, y) \Rightarrow \alpha_{\text{Var}} = \{ x, y \}$, $\text{KVar}(\alpha) = \{ x \}$
- $\alpha = S(z, w) \Rightarrow \alpha_{\text{Var}} = \{ x, z, w \}$, $\text{KVar}(\alpha) = \{ x \}$

We denote constants by non-italic letters from the beginning of the alphabet (e.g., a and b), as opposed to variables (e.g., x and y)

Notation

- We denote by:
 - $\text{Atoms}(Q)$ the set of atoms of Q
 - $\text{Var}(Q)$ the set of all the variables of Q
 - α_R the atom of Q over the relation name R
 - R_{α} the relation name of the atom α

- For $\alpha \in \text{Atoms}(Q)$, we denote by:
 - $\text{Var}(\alpha)$ the variables that occur in α
 - $\text{KVar}(\alpha)$ the variables that occur in key attributes of R_{α}
We define the following set of functional dependencies (FDs):

$$\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \}$$

FD’(Q) denotes the set of all FDs over Var(Q) that are logically implied from FD(Q).

Equivalently (by Armstrong’s axioms), FD’(Q) is obtained from FD(Q) by repeatedly applying the following rules:

- If $x \rightarrow X'$ whenever $X' \subseteq X$ (reflexivity)
- If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ (transitivity)
- If $X \rightarrow Y$, then $X \cup Z \rightarrow Y \cup Z$ (augmentation)

Hence, in independent of x.

If x, then $Q() := R(x,y), S(x,z), T(z,y), U(b,z)$.

Example: $Q() := R(x,a,y), S(x,z), T(z,y), U(b,z)$.

Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.

Example: $Q() := R(x,a,y), S(x,z), T(z,y), U(b,z)$.

Which variables are external dependents of α_R?

x, z, w

Which variables are external dependents of α_S?

x, y, z, u

If x is not an external dependent of α, then we say that x is externally independent of α.

Let α and γ be two distinct atoms of Q.

We say that α attacks γ if there is a sequence β_1, \ldots, β_n of atoms such that:

- $\alpha = \beta_1$
- $\beta_{n-1} \gamma \beta_n$

Every Var(β_i) \cap Var(β_{i+1}) contains at least one variable that is externally independent of α.

If β and γ are atoms, then we denote by $\beta \overset{\leq}{\sim}_R \gamma$ the fact that x is a variable in Var(β) \cap Var(γ) that is externally independent of α_R.

Hence, α attacks γ if and only if there exists a sequence $\beta_1 \overset{1}{\sim}_R \beta_2 \overset{2}{\sim}_R \ldots \overset{n}{\sim}_R \beta_n$, where $\beta_1 = \alpha$, $R = R_1$, and $\beta_n = \gamma$.

Examples:

- $Q() := R(x,a,y), S(x,z), T(z,y), U(b,z)$
- $R(x,a,y)$ attacks $T(z,y,u)$:
 $$R(x,a,y) \overset{y}{\sim}_R T(z,y,u)$$
- $U(b,z)$ attacks all other atoms:
 $$U(b,z) \overset{z}{\sim}_U S(x,z), w \overset{z}{\sim}_U R(x,a,y) \overset{y}{\sim}_U T(z,y,u)$$
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise

- Example: $Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - $R(x, a, y)$ weakly attacks $T(z, y, u)$
 - $U(b, z)$ strongly attacks all other atoms

Attack Graphs

- The attack graph of Q is the directed graph $G = (V, E)$ where:
 - V is Atoms(Q)
 - There is an edge (α, γ) whenever α attacks γ

- An edge (α, γ) is:
 - weak if α weakly attacks γ (i.e., $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$)
 - strong if α strongly attacks γ

Example

$$Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$$

Table of Contents

- Introduction
- Trichotomy Theorem
- Attacks
- Refined Trichotomy
- FO Rewriting with SQL

Refined Trichotomy (Boolean case)

Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if Consistent_Q^S is expressible in FO.
2. If G has cycles, but no cycle contains a strong edge, then Consistent_Q^S can be computed in polynomial time.
3. If G has a cycle with a strong edge, then it is coNP-complete to decide whether Consistent_Q^S is true on a given instance.

$$Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$$

\Rightarrow in FO
Example 2

<table>
<thead>
<tr>
<th>LC(lecturer,course)</th>
<th>CT(course,ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

$$Q() := \text{LC}(x, y), \text{CT}(y, z)$$

$$\Rightarrow \text{in FO}$$

Example 3

<table>
<thead>
<tr>
<th>LC(lecturer,course)</th>
<th>TC(ta,course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>ta → course</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

$$Q() := \text{LC}(x, y), \text{TC}(x', y)$$

$$\Rightarrow \text{coNP-complete}$$

Example 4

<table>
<thead>
<tr>
<th>LC(lecturer,course)</th>
<th>CT(course,ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have the same lecturer and TA?

$$Q() := \text{LC}(x, y), \text{CT}(y, x)$$

$$\Rightarrow \text{not in FO, but in polynomial time}$$

Extending to Non-Boolean CQs

- To extend the trichotomy to non-Boolean CQs, we need some notation.
- If \(x \) is a sequence of variables and \(a \) is a sequence of constants of the same length as \(x \), then \(Q[x \rightarrow a] \) is the CQ that is obtained from \(Q \) by replacing each variable \(x_i \) with \(a_i \)
 - If \(x_i \) is a head variable, then we remove \(x_i \) from the head

Generalized Trichotomy (non-Boolean case)

Theorem [KW15]

Let \(S = (R, \Sigma) \) be a schema, such that \(\Sigma \) consists of primary keys. Let \(Q(x) \) be a CQ without self joins (where \(x \) is the sequence of head variables). Let \(Q_a \) be the Boolean CQ \(Q[x \rightarrow a] \) for some tuple \(a \) of constants, and let \(G \) be the attack graph of \(Q_a \).

- **G** is acyclic if and only if \(\text{Consistent}_G^{Q_a} \) is equivalent to some \(\varphi(x) \) in FO.
- **If** \(G \) has cycles, but no cycle contains a strong edge, then \(\text{Consistent}_G^{Q_a} \) can be evaluated in polynomial time.
- **If** \(G \) has a cycle with a strong edge, then non-emptiness of \(\text{Consistent}_G^{Q_a} \) is coNP-complete.

Example

$$Q(y) := R(x, a, y), S(z, w), T(z, u), U(b, z)$$

$$Q'(y) := R(x, a, c), S(z, w), T(z, c, u), U(b, z)$$

$$\Rightarrow \text{in FO}$$
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is KVar(α) and y is Var(α) \setminus KVar(α)
- If $\alpha \in \text{Atoms}(Q)$, then Q^α is the CQ obtained from Q by removing α
- Recall: if x is a sequence of variables and α is a sequence of constants of the same length as x, then $Q_{[x \mapsto \alpha]}$ is the CQ that is obtained from Q by replacing each variable x_i with α_i
- It may be the case that Q does not contain some of the x_i

Problem Definition

- Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
- Given: a CQ Q over R such that
 - Q has no self joins (i.e., no relation name occurs more than once)
 - The attack graph of Q is acyclic
- Goal: Compute an SQL query Q_{cons} over R, such that for every inconsistent instance I we have:
 $$\text{Consistent}_{\Sigma}(I) = Q_{\text{cons}}(I)$$

Key Lemma

Lemma [KW15]

Let $S = (R, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

- Q is consistent (i.e., true on every repair of) over I.
- For some $\alpha(a, b) \in I$, the CQ $Q_{[x \mapsto \alpha]}$ is consistent over I.
- There is a fact $f = \alpha(a, b)$ in I such that: for all facts g of R_α with the key of f there is c such that: (1) $g = \alpha(a, c)$, and
- $Q_{[x \mapsto (x, y) \mapsto \alpha(a, c)]}$ is consistent over I.
Another Lemma

Lemma [KW15]

Let \(S = (R, \Sigma) \) be a schema where \(\Sigma \) consists of primary keys. Let \(Q \) be a Boolean CQ without self joins and with an acyclic attack graph. Let \(\alpha(x, y) \) be an atom without incoming edges in the attack graph of \(Q \). For every \(\alpha(a, c) \in I \), the CQ \(Q' \) of \(Q \) without \(\alpha(a, c) \) has an acyclic attack graph.

Notation

- For a counter \(l \), we denote by:
 - \(R^l \) the sequence obtained from \(R \) by replacing each \(R_i \) with \("R_i \, R_i^l" \) (i.e., naming \(R_i \) by \(R_i^l \))
 - \(X^l \) the sequence obtained from \(X \) by replacing each \(R_i \) with \(R_i^l \)
 - \(AC^l \) the conjunction obtained from \(AC \) by replacing each \(R_i \) with \(R_i, A = R_i^l, A \)
 - \(TC^l \) the conjunction obtained from \(TC \) by replacing each \(R_i \) with \(R_i, A = t \)

More Notation

- If \(R' \) is a subsequence of \(R \), then we denote by:
 - \(AC \cap R' \) the restriction of \(AC \) to those \(R_i, A = R_i, B \) where \(R_i \in R' \) and \(R_j \in R' \)
 - \(TC \cap R' \) the restriction of \(TC \) to those \(R_i, A = t \) where \(R_i \in R' \)

Selecting a Non-Attacked Atom

- Let \(\alpha \) be a non-attacked atom (i.e., \(\alpha \) has no incoming edges in the attack graph), and let \(R = R_{\alpha} \)
- Denote by:
 - \(K = R.A_1, \ldots, R.A_\ell \) the key attributes of \(R \)
 - \(V = R.B_1, \ldots, R.B_\ell \) the non-key attributes of \(R \)

Recursive Rewriting

- Begin with Boolean: assuming ‘true’ instead of \(X \)
 - \(\text{SELECT} '\text{true}' \text{ FROM} R \text{ WHERE} AC \text{ AND} TC \)
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of X
 \[
 \text{SELECT 'true' FROM } R \text{ WHERE } AC \text{ AND } TC
 \]
- We create the rewriting $\text{Rewrite}(R, AC, TC)$:
 \[
 \text{SELECT 'true' FROM } R' \text{ WHERE }
 \begin{cases}
 \text{SELECT 'true' FROM } R \cap R' \text{ WHERE } K^2 = K^1 \text{ AND NOT }
 \{\text{AC} \cap \{R^2\} \text{ AND } TC \cap \{R^2\}\} \text{ AND }
 \text{EXISTS}(\text{Rewrite}(R', AC \cap R', TC'))
 \end{cases}
 \]

Example 1

\[
\begin{array}{c}
\text{LC}(Ax, Ay) : \text{CT}(Ay, Az) \\
Q() = \text{LC}(z, y), \text{CT}(y, z)
\end{array}
\]

\[
\begin{array}{c}
\text{SELECT 'true' FROM } \text{LC, CT WHERE } LC.Ay = CT.Ay
\end{array}
\]

Example 2

\[
\begin{array}{c}
\text{LC}(Ax, Ay) : \text{CT}(Ay, Az) \\
Q() = \text{LC}(z, y), \text{CT}(y, Avi)
\end{array}
\]

\[
\begin{array}{c}
\text{SELECT 'true' FROM } \text{LC, CT WHERE } LC.Ay = CT.Ay \text{ AND CT.Az = 'Avi'}
\end{array}
\]
Example 2

SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay AND CT.Az='Avi'

SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (
 SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT
 EXISTS(
 SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (
 SELECT 'true' FROM CT CT2 WHERE
 CT2.Ay=CT1.Ay AND NOT
 (CT2.Ay = LC2.Ay AND CT2.Az = 'Avi')
)
)
)

48/53

Example 3

SELECT X FROM R WHERE AC AND TC

SELECT X0 FROM R0 WHERE EXISTS (Rewrite(R, AC, TC'))

TC' is obtained from TC by adding \(R_i.A = R_{0i}.A \) for every \(R_i.A \) in X.

48/53

References I

- Gaëlle Fontaine, Why is it hard to obtain a dichotomy for consistent query answering?, LICS, 2013, pp. 550–559.
