Principles of Managing Uncertain Data

Lecture 4: Computing Joins
Table of Contents

1. Introduction
2. Preliminaries
3. Acyclic Joins
4. Algorithm for Acyclic Joins (Yannakakis)
5. Joins with Hypertree Decompositions
6. Size Bounds and Worst-Case Optimality
We have learned the concepts of *data complexity* and *combined complexity*.
Previous Lecture

- We have learned the concepts of *data complexity* and *combined complexity*
- We have seen that CQs can be evaluated in polynomial time under *data complexity*
 - And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)
We have learned the concepts of *data complexity* and *combined complexity*

- We have seen that CQs can be evaluated in polynomial time under *data complexity*
 - And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)

- We have seen that, under *combined complexity*:
 - Boolean CQ evaluation is NP-complete
We have learned the concepts of *data complexity* and *combined complexity*. We have seen that CQs can be evaluated in polynomial time under *data complexity*, and that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness). We have seen that, under *combined complexity*: Boolean CQ evaluation is NP-complete; CQs cannot be evaluated in polynomial total time, unless $P = NP$.
In this lecture, we focus on *combined complexity*.
In this lecture, we focus on combined complexity

We have seen an example of a fragment of CQs that can be evaluated in polynomial total time

- Namely, n-length paths
In this lecture, we focus on *combined complexity*

- We have seen an example of a *fragment* of CQs that can be evaluated in polynomial total time
 - Namely, n-length paths
- We will learn more a general fragment of tractable CQs
In this lecture, we focus on combined complexity. We have seen an example of a fragment of CQs that can be evaluated in polynomial total time. Namely, n-length paths. We will learn more a general fragment of tractable CQs. Acyclic CQs.
In this lecture, we focus on combined complexity.

We have seen an example of a fragment of CQs that can be evaluated in polynomial total time.

- Namely, n-length paths.

We will learn more a general fragment of tractable CQs.

- Acyclic CQs.
- More generally, CQs of a bounded hypertree width.
In this lecture, we focus on *combined complexity*

- We have seen an example of a *fragment* of CQs that can be evaluated in polynomial total time
 - Namely, \(n \)-length paths
- We will learn more a general fragment of tractable CQs
 - Acyclic CQs
 - More generally, CQs of a bounded *hypertree width*
- In addition, we will learn size bounds on (projection-free) joins, and a matching (*worst-case optimal*) algorithm
Table of Contents

1. **Introduction**
2. **Preliminaries**
3. **Acyclic Joins**
4. **Algorithm for Acyclic Joins (Yannakakis)**
5. **Joins with Hypertree Decompositions**
6. **Size Bounds and Worst-Case Optimality**
7. **Recalling CQs**
8. **Hardness Proofs**
9. **From CQs to Joins**
10. **References**
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) \leftarrow \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) :\neg \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables

- An **atomic formula** has the form \(R(\tau_1, \ldots, \tau_k) \) where \(R \) is a \(k \)-ary relation symbol and each \(\tau_i \) is either a variable (in \(x \) or \(y \)) or a constant term
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

 \[Q(x) \leftarrow \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

 where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables.

- An atomic formula has the form \(R(\tau_1, \ldots, \tau_k) \) where \(R \) is a \(k \)-ary relation symbol and each \(\tau_i \) is either a variable (in \(x \) or \(y \)) or a constant term.

- \(Q(x) \) is the head, \(\varphi_1(x, y), \ldots, \varphi_m(x, y) \) is the body, and each \(\varphi_i(x, y) \) is a body atom.

- We require every variable in the head to occur at least once in the body.
Result of a CQ

- Let \(Q(x) :\vdash \varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be a CQ and an instance, respectively (over the same signature)
Result of a CQ

- Let \(Q(x) \) := \(\varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be a CQ and an instance, respectively (over the same signature)

- A *homomorphism* from \(Q \) to \(I \) is a function \(\mu \) that maps every variable of \(Q \) to a constant, such that \(\mu(\varphi_i(x, y)) \) is a fact of \(I \) for every \(i = 1, \ldots, m \)
 - \(\mu(\varphi_i(x, y)) \) is the fact that is obtained by replacing every variable \(z \) with the constant \(\mu(z) \)
Result of a CQ

- Let $Q(x) :\varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be a CQ and an instance, respectively (over the same signature)

- A homomorphism from Q to I is a function μ that maps every variable of Q to a constant, such that $\mu(\varphi_i(x, y))$ is a fact of I for every $i = 1, \ldots, m$
 - $\mu(\varphi_i(x, y))$ is the fact that is obtained by replacing every variable z with the constant $\mu(z)$

- If μ is a homomorphism from Q to I, then $\mu|_x$ is the restriction of μ to the variables of x
Result of a CQ

- Let \(Q(\mathbf{x}) \) \(\vdash \) \(\varphi_1(\mathbf{x}, \mathbf{y}), \ldots, \varphi_m(\mathbf{x}, \mathbf{y}) \) and \(I \) be a CQ and an instance, respectively (over the same signature).
- A homomorphism from \(Q \) to \(I \) is a function \(\mu \) that maps every variable of \(Q \) to a constant, such that \(\mu(\varphi_i(\mathbf{x}, \mathbf{y})) \) is a fact of \(I \) for every \(i = 1, \ldots, m \).
 - \(\mu(\varphi_i(\mathbf{x}, \mathbf{y})) \) is the fact that is obtained by replacing every variable \(z \) with the constant \(\mu(z) \).
- If \(\mu \) is a homomorphism from \(Q \) to \(I \), then \(\mu|_{\mathbf{x}} \) is the restriction of \(\mu \) to the variables of \(\mathbf{x} \).
- The result of evaluating \(Q \) over \(I \), denoted \(Q(I) \), is the set

\[\{ \mu|_{\mathbf{x}} \mid \mu \text{ is a homomorphism from } Q \text{ to } I \} \]
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.
Reductions

- To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.
- In the first reduction (that we have seen already), we generated a CQ with a *single binary relation*, repeating many times.
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.

In the first reduction (that we have seen already), we generated a CQ with a single binary relation, repeating many times.

In the second reduction, we generate a CQ with many ternary relation symbols, but none of them appears more than once in \(Q \); in addition, each relation has precisely seven tuples.

A CQ without repeated relation symbols is called non-repeating or self-join free.
Reduction 1: from Clique

Problem Def. (Clique)

Given a graph $G = (V, E)$ and a number k, determine whether G contains a clique of size k, that is, a subset U of V such that $|U| = k$ and every two nodes in U are neighbours.
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:
 - $S = \{R_E/2\}$
 - $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
 - $Q_k(x_1, \ldots, x_k) := \wedge_{1 \leq i < j \leq k} R_E(x_i, x_j)$
- For example, suppose that G is the following graph:

```
1 -- 2
|    |
|    |
3 -- 4
```

$I_G = \begin{array}{c|c}
1 & 3 \\
2 & 3 \\
2 & 4 \\
3 & 4 \\
\end{array}$

$Q_3 := R_E(X_1, X_2), R_E(X_1, X_3), R_E(X_2, X_3)$
Reduction 2: from 3-SAT

Problem Def. (3-SAT)

Given a propositional formula $\psi = \varphi_1 \land \cdots \land \varphi_m$ over the variables x_1, \ldots, x_n, where each φ_i is a disjunction of three atomic formulas (each has the form x_i or $\neg x_i$), determine whether ψ is satisfiable.
Reduction

- Given $\psi = \varphi_1 \land \cdots \land \varphi_m$ we construct:
 - A relation symbol $R_i/3$ for each φ_i
 - An atomic formula $\phi_i = R_i(x, y, z)$ where x, y and z are the variables that appear in φ_i
 - $Q(x_1, \ldots, x_n) :\!-\! \phi_1, \ldots, \phi_m$
 - The instance I has in the relation R_i all 7 tuples $(b_1, b_2, b_3) \in \{0, 1\}^3$ that satisfy φ_i

- That’s it!
Example

ψ: (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (x ∨ ¬z ∨ ¬w)
Example

- $\psi: \ (x \lor y \lor z) \land (\neg x \lor y \lor w) \land (x \lor \neg z \lor \neg w)$
- $Q(x, y, z, w) :\neg R_1(x, y, z), R_2(x, y, w), R_3(x, z, w)$

$I = \begin{array}{c|c|c}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}

\begin{array}{c|c|c|c}
R_1 & R_2 & R_3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
Reduction 3: from 3-Coloring

Problem Def. (3-Coloring)

Given a (directed) graph $G = (V, E)$, determine whether we can assign a color from $\{r, g, b\}$ to each node, so that no two neighbors get the same color.
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, construct:
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, construct:
 - $S = \{R_E/2\}$
Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, construct:

- $S = \{R_E / 2\}$
- $I = \{R_E(c_1, c_2) \mid \{c_1, c_2\} \subseteq \{r, g, b\} \land c_1 \neq c_2\}$
Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, construct:

- $S = \{R_E/2\}$
- $I = \{R_E(c_1, c_2) \mid \{c_1, c_2\} \subseteq \{r, g, b\} \land c_1 \neq c_2\}$
- $Q ::= \land_{(i,j) \in E} R_E(x_i, x_j)$
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, construct:
 - $S = \{R_E/2\}$
 - $I = \{R_E(c_1, c_2) \mid \{c_1, c_2\} \subseteq \{r, g, b\} \land c_1 \neq c_2\}$
 - $Q := \bigwedge_{(i, j) \in E} R_E(x_i, x_j)$

- That's it!
Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, construct:

- $S = \{R_E/2\}$
- $I = \{R_E(c_1, c_2) \mid \{c_1, c_2\} \subseteq \{r, g, b\} \land c_1 \neq c_2\}$
- $Q := \bigwedge_{(i,j) \in E} R_E(x_i, x_j)$

That's it!

Note: I is *fixed* (6 × 2 table)!
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.
From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs
- Given a CQ \(Q \) and an instance \(I \) over a schema \(S \), we can easily construct a schema \(T \), an RA expression \(\alpha \) over \(T \) and an instance \(J \) over \(T \) such that:
From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.
- Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:
 - α has the form $\pi_{A_1, \ldots, A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols.
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.

Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:

- α has the form $\pi_{A_1, \ldots, A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols
- $\alpha(J)$ and $Q(I)$ are “the same”
 - That is, there is a straightforward translation between the two
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.

Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:

- α has the form $\pi_{A_1,\ldots,A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols
- $\alpha(J)$ and $Q(I)$ are “the same”
 - That is, there is a straightforward translation between the two

For example, how would you translate the following CQ?

$$Q(x, y) \leftarrow R(x, y, \text{Avia}), R(y, z, x), S(x, x)$$
Translation

- Let $Q(x) :- \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
Translation

- Let $Q(x) :- \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each *variable* becomes an *attribute*
Translation

- Let $Q(x) : = \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each variable becomes an attribute
- Each body atom φ_i becomes a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
Translation

- Let $Q(x) :− \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each variable becomes an attribute
- Each body atom φ_i becomes a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
- Each head variable becomes a projection attribute
Translation

- **Let** $Q(x) :\varphi_1(x, y), \ldots, \varphi_m(x, y)$ **and** I **be** over \mathcal{S}
- **Each** variable **becomes** an attribute
- **Each** body atom φ_i **becomes** a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
- **Each** head variable **becomes** a projection attribute
- In J, the relation T_i is obtained by evaluating φ_i over I as if φ_i is a CQ with all variables in the head
Translation

- Let $Q(x) :- \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each variable becomes an attribute
- Each body atom φ_i becomes a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
- Each head variable becomes a projection attribute
- In J, the relation T_i is obtained by evaluating φ_i over I as if φ_i is a CQ with all variables in the head
- Example: $Q(x, y) :- \text{R}(x, y, \text{Avia}), \text{R}(y, z, x), \text{S}(x, x)$
 \[
 \Rightarrow \pi_{x, y}(T_1(x, y) \bowtie T_2(x, y, z) \bowtie T_3(x))
 \]
In the remainder of this lecture, a **CQ expression** is an RA expression of the form

\[\pi_A(R_1 \Join \cdots \Join R_k) \]

- Every \(R_i \) is a distinct relation symbol (of any arity)
- \(A \) is a sequence of attributes among the \(A_i \)s
CQ Expression

- In the remainder of this lecture, a **CQ expression** is an RA expression of the form

\[\pi_A(R_1 \Join \cdots \Join R_k) \]

- Every \(R_i \) is a distinct relation symbol (of any arity)
- \(A \) is a sequence of attributes among the \(A_i \)s
- If projection \(\pi \) is redundant, it may be omitted
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by
- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\).
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by

- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\)

Let \(\alpha = \pi_A (R_1 \Join \cdots \Join R_k)\) be a CQ expression.
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by
- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\).

Let \(\alpha = \pi_A(R_1 \bowtie \cdots \bowtie R_k)\) be a CQ expression,

The hypergraph of \(\alpha\), denoted \(\mathcal{H}_\alpha\), has:
- The attributes in \(\alpha\) as the set of nodes
- A hyperedge \(e_i\) for each \(R_i\), containing the attributes of \(R_i\)
Example

\[\pi_{x,y}(R(x, y, z) \Join S(x, u) \Join T(y, z, w)) \]

\[H_\alpha \]
Join Tree

- A *join tree* of a hypergraph \mathcal{H} is a tree T with the following properties.
A *join tree* of a hypergraph \(\mathcal{H} \) is a tree \(T \) with the following properties:

- The nodes of \(T \) are the hyperedges of \(\mathcal{H} \).
- In notation, \(\text{nodes}(T) = \text{edges}(\mathcal{H}) \)
A *join tree* of a hypergraph \mathcal{H} is a tree T with the following properties:

- The nodes of T are the hyperedges of \mathcal{H}.
 - In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$.
- For every $v \in \text{nodes}(\mathcal{H})$, the nodes of T that contain v form a connected subtree of T.

Example:

```
  x z
  y w
  u

  x y w
  x z
  u

  x'
```
Join Tree

- A *join tree* of a hypergraph \mathcal{H} is a tree T with the following properties:
 - The nodes of T are the hyperedges of \mathcal{H}
 - In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$
 - For every $v \in \text{nodes}(\mathcal{H})$, the nodes of T that contain v form a connected subtree of T

- Example:
An *ear* of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that

- e is disjoint from all other hyperedges *or*
- there exists another hyperedge e' where $e \setminus e'$ is disjoint from all other hyperedges
Ear Removal

- An **ear** of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that
 - e is disjoint from all other hyperedges or
 - there exists another hyperedge e' where $e \setminus e'$ is disjoint from all other hyperedges
- An **ear removal** on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}
Ear Removal

- An **ear** of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that
 - e is disjoint from all other hyperedges or
 - there exists another hyperedge e' where $e \setminus e'$ is disjoint from all other hyperedges

- An **ear removal** on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}
 - $\text{nodes}(\mathcal{H}') = \text{nodes}(\mathcal{H})$ and $\text{edges}(\mathcal{H}') = \text{edges}(\mathcal{H}) \setminus \{e\}$
An **ear** of a hypergraph \(\mathcal{H} \) is a hyperedge \(e \) of \(\mathcal{H} \) such that

- \(e \) is disjoint from all other hyperedges or
- there exists another hyperedge \(e' \) where \(e \setminus e' \) is disjoint from all other hyperedges.

An **ear removal** on \(\mathcal{H} \) is the operation of obtaining a new hypergraph \(\mathcal{H}' \) by removing an ear \(e \) of \(\mathcal{H} \):

- \(\text{nodes}(\mathcal{H}') = \text{nodes}(\mathcal{H}) \) and \(\text{edges}(\mathcal{H}') = \text{edges}(\mathcal{H}) \setminus \{e\} \)

Example:

\[\begin{array}{c}
\text{w} \quad \text{z} \quad \text{y} \\
\text{x} \quad \text{u} \\
\end{array}\] \rightarrow \begin{array}{c}
\text{w} \quad \text{z} \\
\text{x} \quad \text{u} \\
\text{y} \quad \text{u} \\
\end{array}\] \rightarrow \begin{array}{c}
\text{w} \quad \text{z} \\
\text{x} \\
\end{array}\]
Acyclic Hypergraphs

Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:
Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
2. By repeatedly applying ear removal (in any order), one can eliminate all the hyperedges of \mathcal{H}.
Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
2. By repeatedly applying ear removal (in any order), one can eliminate all the hyperedges of \mathcal{H}.

If \mathcal{H} satisfies the above conditions, then \mathcal{H} is said to be *acyclic*.
Comments

- You will prove the proposition in a home assignment
You will prove the proposition in a home assignment.

In particular, you will show how to build a join tree for a given \(H \) via ear removal.

- You will prove the proposition in a home assignment
- In particular, you will show *how to build a join tree for a given \(H \) via ear removal*
 - Efficiently!
 - (This will be used later in this lecture)
Comments

- You will prove the proposition in a home assignment.
- In particular, you will show how to build a join tree for a given \mathcal{H} via ear removal:
 - Efficiently!
 - (This will be used later in this lecture)
- When \mathcal{H} is a graph (i.e., every hyperedge has exactly two nodes), acyclicity is the usual notion of graph acyclicity (forest):
 - In other words, graph acyclicity and hypergraph acyclicity are the same on graphs.
A CQ expression α is *acyclic* if its associated hypergraph \mathcal{H}_α is acyclic.
Acyclic CQs

- A CQ expression α is acyclic if its associated hypergraph H_α is acyclic.
- *Which of the following is acyclic?*

\[
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \\
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \bowtie S(x_1, \ldots, x_n)
\]
A CQ expression α is *acyclic* if its associated hypergraph \mathcal{H}_α is acyclic.

Which of the following is acyclic?

\[
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \\
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \Join S(x_1, \ldots, x_n)
\]

Which of the above can be solved in polynomial total time?
Table of Contents

1. **Introduction**

2. **Preliminaries**

3. **Acyclic Joins**

4. **Algorithm for Acyclic Joins (Yannakakis)**

5. **Joins with Hypertree Decompositions**

6. **Size Bounds and Worst-Case Optimality**

References
In this part we describe the algorithm of Mihalis Yannakakis [Yan81] for computing acyclic CQs. The algorithm terminates in polynomial total time. Recall: polynomial time in the combined size of the input and the output.
Main Steps of The Algorithm

Input: CQ expression $\alpha = \pi_A(R_1 \Join \cdots \Join R_k)$, instance I

1. Compute a join tree T for H_α
2. Apply a *full reduction* to I according to T
 - More specifically, replace source relations with *semijoins*
3. Compute $\alpha(I)$ in *leaf-to-root* order according to T, projecting on only *relevant variables*
 - And eliminating every redundant/irrelevant variable
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
- We will view the join tree as \textit{directed} and \textit{ordered} by:
 - Selecting an arbitrary \textit{root} that all nodes are reachable from
 - This action determines all directions
 - Selecting an arbitrary order among every set of siblings
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
- We will view the join tree as *directed* and *ordered* by:
 - Selecting an arbitrary *root* that all nodes are reachable from
 - This action determines all directions
 - Selecting an arbitrary order among every set of siblings
- In the next slides, denote this (directed & ordered) tree by T
Notation

- For each node v of T, let:
 - R_v be the relation symbol that corresponds to v
 - r_v be the relation of I over R_v
Notation

- For each node v of T, let:
 - R_v be the relation symbol that corresponds to v
 - r_v be the relation of I over R_v

Example: $\pi_{x,y}(R(x,y,z) \Join S(x,u) \Join T(y,z,w))$

$$
\begin{align*}
&v \\
&\quad x \\
&\quad \quad y \\
&\quad \quad \quad z \\
&\quad \quad \quad \quad w \\
&\quad \quad \quad \quad \quad y \\
&\quad \quad \quad \quad \quad \quad u \\
&\quad \quad \quad \quad \quad \quad \quad x \\
&\quad \quad \quad \quad \quad v' \\
&\quad \quad \quad \quad \quad \quad \quad v'' \\
\end{align*}
$$

$R_v = R \quad R_{v'} = T \quad R_{v''} = S$
Intuition on Full Reduction (1)
Intuition on Full Reduction (2)
Intuition on Full Reduction (2)
The **left semijoin** of two relations r and s, denoted $r \triangleright s$, is the relation that is obtained from r by selecting only the tuples that have a matching tuple in (i.e., are joinable with) s.
The left semijoin of two relations r and s, denoted $r \bowtie s$, is the relation that is obtained from r by selecting only the tuples that have a matching tuple in (i.e., are joinable with) s.

In RA:

$$r \bowtie s \overset{\text{def}}{=} \pi_A(r \bowtie s)$$

where A is the attribute sequence of r.
The **left semijoin** of two relations r and s, denoted $r \triangleleft s$, is the relation that is obtained from r by selecting only the tuples that have a matching tuple in (i.e., are joinable with) s.

In RA:

$$ r \triangleleft s \overset{\text{def}}{=} \pi_A(r \bowtie s) $$

where A is the attribute sequence of r.

For example, what is $r \triangleleft s$ if:

- r and s have the same set of attributes?
- r and s have disjoint sets of attributes?
Applying a Full Reduction

- Procedure called *Inside-Out*, using two passes
Procedure called *Inside-Out*, using two passes

1. Leaf-to-root (inside):
 1. for all nodes v of T in leaf-to-root order do
 2. if v is not the root of T then
 3. $r_p := r_p \bowtie r_v$, where p is the parent of v
Procedure called **Inside-Out**, using two passes

1. **Leaf-to-root (inside):**
 1. for all nodes \(v \) of \(T \) in leaf-to-root order do
 2. if \(v \) is not the root of \(T \) then
 3. \(r_p := r_p \times r_v \), where \(p \) is the parent of \(v \)

2. **Root-to-leaf (out):**
 1. for all nodes \(v \) of \(T \) in root-to-leaf order do
 2. for all children \(c \) of \(v \) do
 3. \(r_c := r_c \times r_v \)
Leaf-to-Root Join

- For each node v of T, let:
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
 - P_v be the set of attributes shared by v and its parent (empty for the root)
Leaf-to-Root Join

- For each node \(v \) of \(T \), let:
 - \(T_v \) be the subtree of \(T \) rooted at \(v \)
 - \(O_v \) be the set of projected attributes that appear in \(T_v \)
 - \(P_v \) be the set of attributes shared by \(v \) and its parent (empty for the root)

- We apply the join as follows:

```plaintext
1 for all nodes \( v \) of \( T \) in leaf-to-root order do
2     if \( v \) is a leaf then
3         result(\( v \)) := r_v
4     else
5         let \( c_1, \ldots, c_k \) be the children of \( v \);
6         result(\( v \)) := \( \pi_{O_v, P_v}(r_v \bowtie result(c_1) \bowtie \cdots \bowtie result(c_k)) \)
```
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
 - P_v be the set of attributes shared by v and its parent (empty for the root)

- We apply the join as follows:

1. for all nodes v of T in leaf-to-root order do
2. if v is a leaf then
3. result(v) := r_v
4. else
5. let c_1, \ldots, c_k be the children of v;
6. result(v) := $\pi_{O_v,P_v}(r_v \Join result(c_1) \Join \cdots \Join result(c_k))$
- The result is result(root(T))
Proof idea:

- Every tuple that is deleted during the full reduction does not contribute to the overall result of the join; why so?
- On the other hand, after the full reduction, there are no "hanging tuples" in \(r_v \) (every tuple participates in the join).
- Similarly, in the evaluation, there are no hanging tuples in result \(v \) (every tuple can be extended to a join tuple).
- Consequently:
- We compute the correct result.
- The size of each result \(v \) is polynomial in the size of the final output.
Proof idea:

- Every tuple that is deleted during the full reduction *does not* contribute to the overall result of the join; *why so?*
- On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
Proof idea:

- Every tuple that is deleted during the full reduction does not contribute to the overall result of the join; why so?
- On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
- Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple can be extended to a join tuple)
Correctness and Efficiency (Sketch)

- Proof idea:
 - Every tuple that is deleted during the full reduction does not contribute to the overall result of the join; *why so?*
 - On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
 - Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple can be extended to a join tuple)
 - Consequently:
Correctness and Efficiency (Sketch)

- Proof idea:
 - Every tuple that is deleted during the full reduction does not contribute to the overall result of the join; why so?
 - On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
 - Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple can be extended to a join tuple)
 - Consequently:
 - We compute the correct result
Correctness and Efficiency (Sketch)

- Proof idea:
 - Every tuple that is deleted during the full reduction *does not* contribute to the overall result of the join; *why so?*
 - On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
 - Similarly, in the evaluation, there are no hanging tuples in result(v) (every tuple can be extended to a join tuple)
 - Consequently:
 - We compute the correct result
 - The size of each result(v) is polynomial in the size of the final output
Intuition (1)
Intuition (1)
Intuition (2)

\[\begin{array}{c}
 x_2 & x_1 \\
 x_3 & x_{12} \\
 x_4 & x_{11} \\
 x_5 & x_{10} \\
 x_6 & x_9 \\
 x_7 & x_8 \\
\end{array} \]
Intuition (2)
Intuition (2)
Intuition (3)
Intuition (3)
Intuition (3)
Tree Decomposition of a Graph

- Let G be a graph
Tree Decomposition of a Graph

- Let G be a graph
- A *Tree Decomposition* (TD) of G is a pair (T, χ) with the following properties:
Tree Decomposition of a Graph

- Let G be a graph
- A **Tree Decomposition** (TD) of G is a pair (T, χ) with the following properties:
 - T is a tree
Tree Decomposition of a Graph

- Let G be a graph
- A *Tree Decomposition* (TD) of G is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called *bag*) of $\text{nodes}(G)$, so that:
Tree Decomposition of a Graph

- Let G be a graph
- A *Tree Decomposition* (TD) of G is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called *bag*) of $\text{nodes}(G)$, so that:
 - For every edge $e \in \text{edges}(G)$ there is a node t of T such that $e \subseteq \chi(t)$
Tree Decomposition of a Graph

- Let G be a graph
- A **Tree Decomposition** (TD) of G is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called **bag**) of $\text{nodes}(G)$, so that:
 - For every edge $e \in \text{edges}(G)$ there is a node t of T such that $e \subseteq \chi(t)$
 - Every node v of G occurs in a connected subtree of T; that is, the set $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T
Let G be a graph.

A Tree Decomposition (TD) of G is a pair (T, χ) with the following properties:

- T is a tree
- χ is a function that maps every node t of T to a subset (called bag) of nodes(G), so that:
 - For every edge $e \in$ edges(G) there is a node t of T such that $e \subseteq \chi(t)$
 - Every node v of G occurs in a connected subtree of T; that is, the set \{ $t \in$ nodes(T) | $v \in \chi(t)$ \} induces a connected subtree of T
- The width of T is $\max \{ |\chi(v)| | v \in$ nodes(T) $\} - 1$
Tree Decomposition of a Graph

- Let G be a graph.
- A **Tree Decomposition** (TD) of G is a pair (T, χ) with the following properties:
 - T is a tree.
 - χ is a function that maps every node t of T to a subset (called *bag*) of $\text{nodes}(G)$, so that:
 - For every edge $e \in \text{edges}(G)$ there is a node t of T such that $e \subseteq \chi(t)$.
 - Every node v of G occurs in a connected subtree of T; that is, the set $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T.
 - The *width* of T is $\max \{|\chi(v)| \mid v \in \text{nodes}(T)\} - 1$.
 - The *treewidth* of G is the minimal width over all TDs of G.

Example (1)
Example (1)
Example (2)
Example (2)
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \mathcal{H} be a hypergraph
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A *Tree Decomposition* (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A Tree Decomposition (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \mathcal{H} be a hypergraph
- A **Tree Decomposition** (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called **bag**) of $\text{nodes}(\mathcal{H})$, so that:
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A Tree Decomposition (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called bag) of nodes(\mathcal{H}), so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq \chi(t)$
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \(\mathcal{H} \) be a hypergraph
- A **Tree Decomposition** (TD) of \(\mathcal{H} \) is a pair \((T, \chi)\) with the following properties:
 - \(T \) is a tree
 - \(\chi \) is a function that maps every node \(t \) of \(T \) to a subset (called bag) of \(\text{nodes}(\mathcal{H}) \), so that:
 - For every hyperedge \(e \in \text{edges}(\mathcal{H}) \) there is a node \(t \) of \(T \) such that \(e \subseteq \chi(t) \)
 - Every node \(v \) of \(\mathcal{H} \) occurs in a connected subtree of \(T \); that is, \(\{ t \in \text{nodes}(T) \mid v \in \chi(t) \} \) induces a connected subtree of \(T \)
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A Tree Decomposition (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called bag) of $\text{nodes}(\mathcal{H})$, so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq \chi(t)$
 - Every node v of \mathcal{H} occurs in a connected subtree of T; that is, $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T
- Note: if (T, χ) is a TD of \mathcal{H}, then T is a join tree over the bags
Examples

Examples
Examples
Quality?

- Every hypergraph has a TD!
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like to be able to efficiently compute the part of the join that corresponds to each bag
- This could be achieved if each bag could be *covered* by a small number of relations
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
- This could be achieved if each bag could be *covered* by a small number of relations
- Just intuition... Later we show how exactly that helps to get complexity bounds
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
Let \mathcal{H} be a hypergraph

- A **Generalized Hypertree Decomposition** (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
- A *Generalized Hypertree Decomposition* (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:
 - (T, χ) is a tree decomposition of \mathcal{H}
Let \mathcal{H} be a hypergraph.

A Generalized Hypertree Decomposition (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:

- (T, χ) is a tree decomposition of \mathcal{H}
- λ is a function that maps every node t of T to a subset of edges(\mathcal{H}) that covers $\chi(t)$; that is, $\chi(t) \subseteq \bigcup \lambda(t)$
 - $\bigcup \lambda(t)$ means $\bigcup_{e \in \lambda(t)} e$
"Let \mathcal{H} be a hypergraph.

A Generalized Hypertree Decomposition (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:

- (T, χ) is a tree decomposition of \mathcal{H}
- λ is a function that maps every node t of T to a subset of edges(\mathcal{H}) that covers $\chi(t)$; that is, $\chi(t) \subseteq \bigcup \lambda(t)$
 - $\bigcup \lambda(t)$ means $\bigcup_{e \in \lambda(t)} e$

The width of a GHD (T, χ, λ) is the maximal number of hyperedges needed for covering a node; that is

$\text{max} \{ |\lambda(t)| \mid t \in \text{nodes}(T) \}$
The generalized hypertree width \((\text{ghw})\) of a hypergraph \(\mathcal{H}\) is the minimum of the widths of all GHDS of \(\mathcal{H}\).
Generalized Hypertree Width

- The *generalized hypertree width* (ghw) of a hypergraph \mathcal{H} is the *minimum of the widths of all GHDs* of \mathcal{H}
- The ghw of a CQ expression α is the ghw of \mathcal{H}_α
The generalized hypertree width (ghw) of a hypergraph \mathcal{H} is the minimum of the widths of all GHDs of \mathcal{H}.

The ghw of a CQ expression α is the ghw of \mathcal{H}_α.

Claim (easy to prove): α (or \mathcal{H}) is acyclic if and only if its ghw is 1.
Utilizing Bounded ghw

We now show how a small (bounded) ghw can be used for efficiently computing a join.
Notation

- For each hyperedge e of \mathcal{H}_α, let:
 - R_e be the relation symbol that corresponds to e
 - r_e be the relation of I over R_e
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α
- Given an instance I, we can compute $\alpha(I)$ as follows

\[
\text{For each node } t \text{ of } T \text{ compute the relation } r(t) = \pi_{\chi(t)}(t) \times_{e \in \lambda(t)} r(e) \\text{next, for each relation } r_i \text{ find a node } t \text{ such that } \chi(t) \text{ contains all the attributes of } R_i \text{ and set:}
\]
\[
\text{That is, delete from } r(t) \text{ every tuple that cannot be joined with any tuple from } r_i
\]
CQ Evaluation with a GHD (1)

- Let \(\alpha \) be a CQ expression, and let \((T, \chi, \lambda)\) be a GHD of \(H_\alpha \)
- Given an instance \(I \), we can compute \(\alpha(I) \) as follows
- For each node \(t \) of \(T \) compute the relation

\[
r(t) := \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right)
\]
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α.
- Given an instance I, we can compute $\alpha(I)$ as follows.
- For each node t of T compute the relation

$$r(t) := \pi_{\chi(t)}\left(\bigotimes_{e \in \lambda(t)} r_e \right)$$

- Next, for each relation r_i find a node t such that $\chi(t)$ contains all the attributes of R_i and set:

$$r(t) := r(t) \bowtie r_i$$
Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α.

Given an instance I, we can compute $\alpha(I)$ as follows:

For each node t of T compute the relation

$$r(t) := \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right)$$

Next, for each relation r_i find a node t such that $\chi(t)$ contains all the attributes of R_i and set:

$$r(t) := r(t) \Join r_i$$

That is, delete from $r(t)$ every tuple that cannot be joined with any tuple from r_i.
Now we have the following:
CQ Evaluation with a GHD (2)

- Now we have the following:
 - $\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t)$
Now we have the following:

\[\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \]

\[\pi_{A} \left(\bigotimes_{i=1}^{m} r_i \right) = \pi_{A} \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right) \]
Now we have the following:

\[\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \]

\[\pi_A \left(\bigotimes_{i=1}^{m} r_i \right) = \pi_A \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right) \]

\[\pi_A \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right) \text{ is an acyclic CQ expression} \]
Now we have the following:

- $\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t)$
- $\pi_A\left(\bigotimes_{i=1}^{m} r_i\right) = \pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$
- $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$ is an \textit{acyclic CQ expression}

- Apply Yannakakis’s to compute $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$
Now we have the following:

- $\forall_{i=1}^{m} r_i = \forall_{t \in \text{nodes}(T)} r(t)$
- $\pi_A\left(\forall_{i=1}^{m} r_i\right) = \pi_A\left(\forall_{t \in \text{nodes}(T)} r(t)\right)$
- $\pi_A\left(\forall_{t \in \text{nodes}(T)} r(t)\right)$ is an acyclic CQ expression

- Apply Yannakakis’s to compute $\pi_A\left(\forall_{t \in \text{nodes}(T)} r(t)\right)$
- That’s it!
Finding a GHD

- It is NP-complete to decide whether a given hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called **hypertree decomposition**, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
Finding a GHD

- It is NP-complete to decide whether a given hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called hypertree decomposition, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called *hypertree decomposition*, which can be found in polynomial time for every fixed k:
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
- We define the *Hypertree Width* of a hypergraph \mathcal{H} as the minimal width over all hypertree decompositions of \mathcal{H}
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called *hypertree decomposition*, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
- We define the *Hypertree Width* of a hypergraph \mathcal{H} as the minimal width over all hypertree decompositions of \mathcal{H}
- Fact: A hypergraph is acyclic if and only if its hypertree width (and ghw) is 1
Theorem

For every constant k, CQ expressions with hypertree width at most k can be evaluated in polynomial total time.\(^a\)

\(^a\)In fact, polynomial delay [KS06]
What about Bounded ghw?

- We know that it is intractable to construct, for a given CQ expression, a GHD of width at most k for all constants $k \geq 3$ [GMS09]
What about Bounded ghw?

- We know that it is intractable to construct, for a given CQ expression, a GHD of width at most k for all constants $k \geq 3$ [GMS09]
- So, the strategy discussed so far (materializing bags) will not work for showing the tractability of CQs with a bounded GHD
What about Bounded ghw?

- We know that it is intractable to construct, for a given CQ expression, a GHD of width at most k for all constants $k \geq 3$ [GMS09]
- So, the strategy discussed so far (materializing bags) will not work for showing the tractability of CQs with a bounded GHD
- Quite remarkably, Chen and Dalmau [CD05] showed that bounded ghw allows to evaluate Boolean CQs in polynomial time
 - Even if we cannot construct a corresponding GHD
What about Bounded ghw?

- We know that it is intractable to construct, for a given CQ expression, a GHD of width at most k for all constants $k \geq 3$ [GMS09]
- So, the strategy discussed so far (materializing bags) will not work for showing the tractability of CQs with a bounded GHD
- Quite remarkably, Chen and Dalmau [CD05] showed that bounded ghw allows to evaluate Boolean CQs in polynomial time
 - Even if we cannot construct a corresponding GHD
- Again, this gives polynomial delay [KS06]
Theorem

For every constant k, CQ expressions with a generalized hypertree width at most k can be evaluated with polynomial delay.
Table of Contents

1 Introduction

2 Preliminaries

3 Acyclic Joins

4 Algorithm for Acyclic Joins (Yannakakis)

5 Joins with Hypertree Decompositions

6 Size Bounds and Worst-Case Optimality
In this part, we focus on a projection-free join query:

\[Q \overset{\text{def}}{=} R_1 \bowtie \cdots \bowtie R_k \]
In this part, we focus on a projection-free join query:

\[Q \overset{\text{def}}{=} R_1 \Join \cdots \Join R_k \]

For \(i = 1, \ldots, k \), denote by \(\text{Att}(R_i) \) the attribute set of \(R_i \).
In this part, we focus on a projection-free join query:

\[Q \overset{\text{def}}{=} R_1 \Join \cdots \Join R_k \]

- For \(i = 1, \ldots, k \), denote by \(\text{Att}(R_i) \) the attribute set of \(R_i \)
- Denote by \(\text{Att}(Q) \) the union \(\bigcup_{i=1}^{k} \text{Att}(R_i) \)
In this part, we focus on a projection-free join query:

\[Q \overset{\text{def}}{=} R_1 \Join \cdots \Join R_k \]

For \(i = 1, \ldots, k \), denote by \(\text{Att}(R_i) \) the attribute set of \(R_i \)

Denote by \(\text{Att}(Q) \) the union \(\bigcup_{i=1}^{k} \text{Att}(R_i) \)

A database \(D \) consists of the relation \(r_i \) over each \(R_i \)
Notation

- In this part, we focus on a projection-free join query:

\[Q \overset{\text{def}}{=} R_1 \Join \cdots \Join R_k \]

- For \(i = 1, \ldots, k \), denote by \(\text{Att}(R_i) \) the attribute set of \(R_i \)
- Denote by \(\text{Att}(Q) \) the union \(\bigcup_{i=1}^{k} \text{Att}(R_i) \)
- A database \(D \) consists of the relation \(r_i \) over each \(R_i \)
- We denote by \(|r_i| \) the number of tuples in \(r_i \)
Warm-Up Discussion

- How many answers can be for the following queries, in terms of $|r_1|, \ldots, |r_k|$?
Warm-Up Discussion

How many answers can be for the following queries, in terms of \(|r_1|, \ldots, |r_k|\)?

1. \(R_1(A) \Join R_2(B) \Join R_3(C)\)
Warm-Up Discussion

- How many answers can be for the following queries, in terms of $|r_1|, \ldots, |r_k|$?
 1. $R_1(A) \bowtie R_2(B) \bowtie R_3(C)$
 2. $R_1(A, B) \bowtie R_2(B, C)$
Warm-Up Discussion

- How many answers can be for the following queries, in terms of \(|r_1|, \ldots, |r_k|\)?

1. \(R_1(A) \Join R_2(B) \Join R_3(C)\)
2. \(R_1(A, B) \Join R_2(B, C)\)
3. \(R_1(A, B) \Join R_2(B, C) \Join R_3(C, A)\)
Warm-Up Discussion

> How many answers can be for the following queries, in terms of \(|r_1|, \ldots, |r_k|\)?

1. \(R_1(A) \Join R_2(B) \Join R_3(C)\)
2. \(R_1(A, B) \Join R_2(B, C)\)
3. \(R_1(A, B) \Join R_2(B, C) \Join R_3(C, A)\)
4. \(R_1(A, B) \Join R_2(B, C) \Join R_3(C, A) \Join R_4(A, B)\)
Warm-Up Discussion

- How many answers can be for the following queries, in terms of $|r_1|$, ..., $|r_k|$?
 1. $R_1(A) \bowtie R_2(B) \bowtie R_3(C)$
 2. $R_1(A, B) \bowtie R_2(B, C)$
 3. $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A)$
 4. $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A) \bowtie R_4(A, B)$
 5. $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A) \bowtie R_4(A, B, C)$
Recall that $Q = R_1 \Join \cdots \Join R_k$.
Rough Bound

- Recall that \(Q = R_1 \Join \cdots \Join R_k \)
- Suppose that \(R_{i_1}, \ldots, R_{i_\ell} \) contain all (i.e., cover the) attributes in \(\text{Att}(Q) \).
Rough Bound

- Recall that $Q = R_1 \Join \cdots \Join R_k$
- Suppose that $R_{i_1}, \ldots, R_{i_\ell}$ contain all (i.e., cover the) attributes in $\text{Att}(Q)$.
- Then, each tuple $t \in Q(D)$ is the combination of tuples from $r_{i_1}, \ldots, r_{i_\ell}$ that agree on the common attributes
 - And some combinations may not be tuples, due to the other relations
Recall that $Q = R_1 \Join \cdots \Join R_k$.

Suppose that $R_{i_1}, \ldots, R_{i_\ell}$ contain all (i.e., cover the) attributes in $\text{Att}(Q)$.

Then, each tuple $t \in Q(D)$ is the combination of tuples from $r_{i_1}, \ldots, r_{i_\ell}$ that agree on the common attributes.

And some combinations may not be tuples, due to the other relations.

Q: How many such combinations can there be?
Rough Bound

- Recall that $Q = R_1 \Join \cdots \Join R_k$
- Suppose that $R_{i_1}, \ldots, R_{i_\ell}$ contain all (i.e., cover the) attributes in $\text{Att}(Q)$.
- Then, each tuple $t \in Q(D)$ is the combination of tuples from $r_{i_1}, \ldots, r_{i_\ell}$ that agree on the common attributes
 - And some combinations may not be tuples, due to the other relations
- Q: How many such combinations can there be?
- A: At most $|r_{i_1}| \times \cdots \times |r_{i_\ell}|$
Rough Bound

- Recall that $Q = R_1 \times \cdots \times R_k$
- Suppose that $R_{i_1}, \ldots, R_{i_\ell}$ contain all (i.e., cover the) attributes in $\text{Att}(Q)$.
- Then, each tuple $t \in Q(D)$ is the combination of tuples from $r_{i_1}, \ldots, r_{i_\ell}$ that agree on the common attributes
 - And some combinations may not be tuples, due to the other relations
- Q: How many such combinations can there be?
- A: At most $|r_{i_1}| \times \cdots \times |r_{i_\ell}|$
- Hence, $|Q(D)| \leq |r_{i_1}| \times \cdots \times |r_{i_\ell}|$
An edge cover of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.
Rephrase via Edge Cover

- An *edge cover* of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.

- In the previous slide we established the following:

$$\forall \mathcal{D} \divides Q \quad |Q(D)| \leq \prod_{i=1}^{k} |r_i|^{a_i}$$
Rephrase via Edge Cover

- An edge cover of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.

- In the previous slide we established the following:

 If (a_1, \ldots, a_k) is an edge cover of Q, then:

 $$|Q(D)| \leq \prod_{i=1}^{k} |r_i|^{a_i}$$

- This bound, however, is not tight; we get tightness via the fractional edge cover.
Fractional Edge Cover

- An edge cover of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.
Fractional Edge Cover

- An *edge cover* of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.

- A *fractional edge cover* of Q is a sequence (w_1, \ldots, w_k) in $[0, 1]^k$ such that for every $A \in \text{Att}$ we have

$$\sum_{i|A \in \text{Att}(R_i)} w_i \geq 1$$
Fractional Edge Cover

- An **edge cover** of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.

- A **fractional edge cover** of Q is a sequence (w_1, \ldots, w_k) in $[0, 1]^k$ such that for every $A \in \text{Att}$ we have

 \[\sum_{i \mid A \in \text{Att}(R_i)} w_i \geq 1 \]

- A fractional edge cover (w_1, \ldots, w_k) of Q is **optimal** if $\sum_{i=1}^{k} w_i$ is minimal.
Fractional Edge Cover

- An *edge cover* of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.

- A *fractional edge cover* of Q is a sequence (w_1, \ldots, w_k) in $[0, 1]^k$ such that for every $A \in \text{Att}$ we have

$$\sum_{i \mid A \in \text{Att}(R_i)} w_i \geq 1$$

- A fractional edge cover (w_1, \ldots, w_k) of Q is *optimal* if $\sum_{i=1}^k w_i$ is minimal.

- Denote by (w_1^*, \ldots, w_k^*) an optimal edge cover of Q.

The AGM Bound [GM14, AGM13]

Theorem

- For every fractional edge cover \((w_1, \ldots, w_k)\) of \(Q\) we have
 \[
 |Q(D)| \leq \prod_{i=1}^{k} |r_i|^{w_i}.
 \]

- For every \(N_0 \in \mathbb{N}\) there is a database \(D\) with \(N > N_0\) tuples such that
 \[
 |Q(D)| \geq \prod_{i=1}^{k} |r_i|^{w_i^*}
 \]

and \(|r_i| = |r_j|\) whenever \(w_i^*, w_j^* > 0\).
Examples

- What is the fractional edge cover of the following join?

\[R(A, B) \Join S(B, C) \Join T(C, A) \]
What is the fractional edge cover of the following join?

\[R(A, B) \Join S(B, C) \Join T(C, A) \]

More generally, the *Loomis Whitney* join \(Q_{k}^{\text{LW}} \) is the following:

\[
Q_{k}^{\text{LW}} \overset{\text{def}}{=} R_1(x_2, \ldots, x_k) \Join R_2(x_1, x_3, \ldots, x_k) \Join \ldots \Join R_k(x_1, x_3, \ldots, x_{k-1})
\]

What is the fractional edge cover of \(Q_{k}^{\text{LW}} \)?
LP for Finding the Upper Bound

Minimize: \[\sum_{i=1}^{k} \log(|r_i|) \cdot x_i \] subject to:

\[\forall A \in \text{Att}(Q) : \sum_{i | A \in \text{Att}(R_i)} x_i \geq 1 \]

\[\forall R_i : x_i \geq 0 \]
Worst-Case Optimality

- An algorithm for computing Q is \textit{worst-case optimal} if its running time is $O(f(|r_1|, \ldots, |r_k|))$ where $f(n_1, \ldots, n_k)$ is the maximal $|Q(D)|$ over all databases D with $|r_i| = n_i$.
An algorithm for computing Q is **worst-case optimal** if its running time is $O(f(|r_1|, \ldots, |r_k|))$ where $f(n_1, \ldots, n_k)$ is the maximal $|Q(D)|$ over all databases D with $|r_i| = n_i$.

Starting with Ngo et al. [NPRR12], in recent years several worst-case optimal join algorithms have been devised [Vel14, KNRR15, KEK17]
An algorithm for computing Q is \textit{worst-case optimal} if its running time is $O(f(|r_1|, \ldots, |r_k|))$ where $f(n_1, \ldots, n_k)$ is the maximal $|Q(D)|$ over all databases D with $|r_i| = n_i$.

Starting with Ngo et al. [NPRR12], in recent years several worst-case optimal join algorithms have been devised [Vel14, KNRR15, KEK17].

In particular, the running time of these algorithms does not exceed the AGM bound.
Worst-Case Optimality

- An algorithm for computing Q is \textit{worst-case optimal} if its running time is $O(f(|r_1|, \ldots, |r_k|))$ where $f(n_1, \ldots, n_k)$ is the maximal $|Q(D)|$ over all databases D with $|r_i| = n_i$

- Starting with Ngo et al. [NPRR12], in recent years several worst-case optimal join algorithms have been devised [Vel14, KNRR15, KEK17]

- In particular, the running time of these algorithms does not exceed the AGM bound

- (The algorithms themselves are beyond the scope of the course)

References II

