Principles of Managing Uncertain Data

Lecture 4: Computing Joins
Introduction
Preliminaries
Acyclic Joins
Algorithm for Acyclic Joins (Yannakakis)
Joins with Hypertree Decompositions
Size Bounds and Worst-Case Optimality
References
We have learned the concepts of *data complexity* and *combined complexity*

We have seen that CQs can be evaluated in polynomial time under *data complexity*

- And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)

We have seen that, under *combined complexity*:

- Boolean CQ evaluation is NP-complete
- CQs cannot be evaluated in polynomial total time, unless P = NP
In this lecture, we focus on combined complexity. We have seen an example of a fragment of CQs that can be evaluated in polynomial total time. Namely, n-length paths. We will learn more a general fragment of tractable CQs. Acyclic CQs. More generally, CQs of a bounded hypertree width. In addition, we will learn size bounds on (projection-free) joins, and a matching (worst-case optimal) algorithm.
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

$$Q(x) :\!\!\!: \varphi_1(x, y), \ldots, \varphi_m(x, y)$$

where each φ_i is an atomic formula, x and y are disjoint sequences of unique variables

- An atomic formula has the form $R(\tau_1, \ldots, \tau_k)$ where R is a k-ary relation symbol and each τ_i is either a variable (in x or y) or a constant term

- $Q(x)$ is the head, $\varphi_1(x, y), \ldots, \varphi_m(x, y)$ is the body, and each $\varphi_i(x, y)$ is a body atom

- We require every variable in the head to occur at least once in the body
Result of a CQ

- Let $Q(x) := \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be a CQ and an instance, respectively (over the same signature).
- A **homomorphism** from Q to I is a function μ that maps every variable of Q to a constant, such that $\mu(\varphi_i(x, y))$ is a fact of I for every $i = 1, \ldots, m$.
 - $\mu(\varphi_i(x, y))$ is the fact that is obtained by replacing every variable z with the constant $\mu(z)$.
- If μ is a homomorphism from Q to I, then $\mu|_x$ is the restriction of μ to the variables of x.
- The **result** of evaluating Q over I, denoted $Q(I)$, is the set $\{\mu|_x \mid \mu \text{ is a homomorphism from } Q \text{ to } I\}$.
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.

In the first reduction (that we have seen already), we generated a CQ with a single binary relation, repeating many times.

In the second reduction, we generate a CQ with many ternary relation symbols, but none of them appears more than once in Q; in addition, each relation has precisely seven tuples.

A CQ without repeated relation symbols is called non-repeating or self-join free.
Reduction 1: from Clique

Problem Def. (Clique)
Given a graph $G = (V, E)$ and a number k, determine whether G contains a clique of size k, that is, a subset U of V such that $|U| = k$ and every two nodes in U are neighbours.
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:
 - $S = \{R_E/2\}$
 - $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
 - $Q_k(x_1, \ldots, x_k) := \bigwedge_{1 \leq i < j \leq k} R_E(x_i, x_j)$
- For example, suppose that G is the following graph:

```
   1 -- 2
     |   |
     |   |
    3 -- 4
```

$I_G = \begin{array}{c|c}
1 & 3 \\
2 & 3 \\
2 & 4 \\
3 & 4 \\
\end{array}$

$Q_3 := R_E(X_1, X_2), R_E(X_1, X_3), R_E(X_2, X_3)$
Reduction 2: from 3-SAT

Problem Def. (3-SAT)

Given a propositional formula $\psi = \varphi_1 \land \cdots \land \varphi_m$ over the variables x_1, \ldots, x_n, where each φ_i is a disjunction of three atomic formulas (each has the form x_i or $\neg x_i$), determine whether ψ is satisfiable.
Reduction

- Given $\psi = \varphi_1 \land \cdots \land \varphi_m$ we construct:
 - A relation symbol $R_i/3$ for each φ_i
 - An atomic formula $\phi_i = R_i(x, y, z)$ where x, y and z are the variables that appear in φ_i
 - $Q(x_1, \ldots, x_n) :\varphi_1, \ldots, \varphi_m$
 - The instance I has in the relation R_i all 7 tuples $(b_1, b_2, b_3) \in \{0, 1\}^3$ that satisfy φ_i

- That’s it!
Example

- $\psi: (x \lor y \lor z) \land (\neg x \lor y \lor w) \land (x \lor \neg z \lor \neg w)$
- $Q(x, y, z, w) := R_1(x, y, z), R_2(x, y, w), R_3(x, z, w)$

$I =
\begin{array}{ccc}
R_1 & R_2 & R_3 \\
\hline
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}$
Reduction 3: from 3-Coloring

Problem Def. (3-Coloring)

Given a (directed) graph $G = (V, E)$, determine whether we can assign a color from $\{r, g, b\}$ to each node, so that no two neighbors get the same color.
Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, construct:

- $S = \{R_E/2\}$
- $I = \{R_E(c_1, c_2) \mid \{c_1, c_2\} \subseteq \{r, g, b\} \land c_1 \neq c_2\}$
- $Q := \bigwedge_{(i,j) \in E} R_E(x_i, x_j)$

That’s it!

Note: I is fixed (6 × 2 table)!
From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs
- Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:
 - α has the form $\pi_{A_1, \ldots, A_k}(T_1 \bowtie \cdots \bowtie T_m)$ where the T_i are distinct relation symbols
 - $\alpha(J)$ and $Q(I)$ are "the same"
 - That is, there is a straightforward translation between the two
- For example, how would you translate the following CQ?

$$Q(x, y) \leftarrow R(x, y, \text{Avia}), R(y, z, x), S(x, x)$$
Translation

- Let $Q(x) : \neg \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each variable becomes an attribute
- Each body atom φ_i becomes a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
- Each head variable becomes a projection attribute
- In J, the relation T_i is obtained by evaluating φ_i over I as if φ_i is a CQ with all variables in the head
- Example: $Q(x, y) : \neg R(x, y, \text{Avia}), R(y, z, x), S(x, x)$

$$\implies \pi_{x,y}(T_1(x, y) \Join T_2(x, y, z) \Join T_3(x))$$
In the remainder of this lecture, a \textit{CQ expression} is an RA expression of the form

\[
\pi_{\mathbf{A}}(R_1 \Join \cdots \Join R_k)
\]

- Every R_i is a distinct relation symbol (of any arity)
- \mathbf{A} is a sequence of attributes among the A_i's
- If projection π is redundant, it may be omitted
Table of Contents

1. Introduction
2. Preliminaries
3. Acyclic Joins
4. Algorithm for Acyclic Joins (Yannakakis)
5. Joins with Hypertree Decompositions
6. Size Bounds and Worst-Case Optimality
Hypergraph of a CQ Expression

- A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).
- If \(\mathcal{H}\) is a hypergraph, then we denote by:
 - \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
 - \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\).
- Let \(\alpha = \pi_A (R_1 \bowtie \cdots \bowtie R_k)\) be a CQ expression.
- The hypergraph of \(\alpha\), denoted \(\mathcal{H}_\alpha\), has:
 - The attributes in \(\alpha\) as the set of nodes
 - A hyperedge \(e_i\) for each \(R_i\), containing the attributes of \(R_i\)
$\pi_{x,y}(R(x,y,z) \Join S(x,u) \Join T(y,z,w))$

\mathcal{H}_α
Join Tree

- A *join tree* of a hypergraph \mathcal{H} is a tree T with the following properties:
 - The nodes of T are the hyperedges of \mathcal{H}.
 - In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$.
 - For every $v \in \text{nodes}(\mathcal{H})$, the nodes of T that contain v form a connected subtree of T.

- Example:
Ear Removal

- An *ear* of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that
 - e is disjoint from all other hyperedges *or*
 - there exists another hyperedge e' where $e \setminus e'$ is disjoint from all other hyperedges

- An *ear removal* on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}
 - $\text{nodes}(\mathcal{H}') = \text{nodes}(\mathcal{H})$ and $\text{edges}(\mathcal{H}') = \text{edges}(\mathcal{H}) \setminus \{e\}$

- Example:
Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
2. By repeatedly applying ear removal (in any order), one can eliminate all the hyperedges of \mathcal{H}.

If \mathcal{H} satisfies the above conditions, then \mathcal{H} is said to be **acyclic**.
Comments

- You will prove the proposition in a home assignment
- In particular, you will show how to build a join tree for a given \(H \) via ear removal
 - Efficiently!
 - (This will be used later in this lecture)
- When \(H \) is a graph (i.e., every hyperedge has exactly two nodes), acyclicity is the usual notion of graph acyclicity (forest)
 - In other words, graph acyclicity and hypergraph acyclicity are the same on graphs
A CQ expression α is **acyclic** if its associated hypergraph H_α is acyclic.

Which of the following is acyclic?

1. $\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right)$

2. $\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \bowtie S(x_1, \ldots, x_n)$

Which of the above can be solved in polynomial total time?
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Preliminaries</td>
</tr>
<tr>
<td>3</td>
<td>Acyclic Joins</td>
</tr>
<tr>
<td>4</td>
<td>Algorithm for Acyclic Joins (Yannakakis)</td>
</tr>
<tr>
<td>5</td>
<td>Joins with Hypertree Decompositions</td>
</tr>
<tr>
<td>6</td>
<td>Size Bounds and Worst-Case Optimality</td>
</tr>
</tbody>
</table>
In this part we describe the algorithm of Mihalis Yannakakis [Yan81] for computing acyclic CQs.

The algorithm terminates in polynomial total time.

Recall: polynomial time in the combined size of the input and the output.
Main Steps of The Algorithm

Input: CQ expression $\alpha = \pi_A(R_1 \bowtie \cdots \bowtie R_k)$, instance I

1. Compute a join tree T for H_α
2. Apply a full reduction to I according to T
 - More specifically, replace source relations with *semijoins*
3. Compute $\alpha(I)$ in *leaf-to-root* order according to T, projecting on only *relevant* variables
 - And eliminating every redundant/irrelevant variable
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
- We will view the join tree as \textit{directed} and \textit{ordered} by:
 - Selecting an arbitrary \textit{root} that all nodes are reachable from
 - This action determines all directions
 - Selecting an arbitrary order among every set of siblings
- In the next slides, denote this (directed & ordered) tree by T
Notation

- For each node v of T, let:
 - R_v be the relation symbol that corresponds to v
 - r_v be the relation of I over R_v
- Example: $\pi_{x,y}(R(x,y,z) \Join S(x,u) \Join T(y,z,w))$

```
\begin{tikzpicture}
  \node (v) at (0,0) [circle, draw] {$v$};
  \node (x) at (-1,-1) [circle, draw] {$x$};
  \node (y) at (0,-1) [circle, draw] {$y$};
  \node (z) at (1,-1) [circle, draw] {$z$};
  \node (w) at (-1,-2) [circle, draw] {$w$};
  \node (y') at (0,-2) [circle, draw] {$y'$};
  \node (u) at (1,-2) [circle, draw] {$u$};
  \node (x') at (-1,-3) [circle, draw] {$x'$};

  \draw (v) -- (x);
  \draw (v) -- (y);
  \draw (v) -- (z);
  \draw (v) -- (w);
  \draw (v) -- (y');
  \draw (v) -- (u);
  \draw (v) -- (x');

  \node at (-1.5,-4) {$R_v = R$};
  \node at (0.5,-4) {$R'_v = T$};
  \node at (1.5,-4) {$R''_v = S$};
\end{tikzpicture}
```
Intuition on Full Reduction (1)
Intuition on Full Reduction (2)

\(I \)

\(\alpha \)

root
Intuition on Full Reduction (2)
The **left semijoin** of two relations \(r \) and \(s \), denoted \(r \Join s \), is the relation that is obtained from \(r \) by selecting only the tuples that have a matching tuple in (i.e., are joinable with) \(s \).

In RA:

\[
 r \Join s \overset{\text{def}}{=} \pi_A(r \Join s)
\]

where \(A \) is the attribute sequence of \(r \).

For example, what is \(r \Join s \) if:

- \(r \) and \(s \) have the same set of attributes?
- \(r \) and \(s \) have disjoint sets of attributes?
Procedure called *Inside-Out*, using two passes

1. **Leaf-to-root (inside):**

   ```
   for all nodes $v$ of $T$ in leaf-to-root order do
   if $v$ is not the root of $T$ then
   $r_p := r_p \times r_v$, where $p$ is the parent of $v$
   ```

2. **Root-to-leaf (out):**

   ```
   for all nodes $v$ of $T$ in root-to-leaf order do
   for all children $c$ of $v$ do
   $r_c := r_c \times r_v$
   ```
Leaf-to-Root Join

- For each node \(v \) of \(T \), let:
 - \(T_v \) be the subtree of \(T \) rooted at \(v \)
 - \(O_v \) be the set of projected attributes that appear in \(T_v \)
 - \(P_v \) be the set of attributes shared by \(v \) and its parent (empty for the root)

- We apply the join as follows:

 1. \textbf{for all nodes} \(v \) \textbf{of} \(T \) \textbf{in leaf-to-root order} \textbf{do}
 2. \quad \textbf{if} \(v \) \textbf{is a leaf} \textbf{then}
 3. \quad \quad \text{result}(v) := r_v
 4. \quad \textbf{else}
 5. \quad \quad \text{let} \(c_1, \ldots, c_k \) \text{ be the children of} \(v \);
 6. \quad \quad \text{result}(v) := \pi_{O_v,P_v}(r_v \Join \text{result}(c_1) \Join \cdots \Join \text{result}(c_k))

- The result is \text{result}(\text{root}(T))
Proof idea:

- Every tuple that is deleted during the full reduction does not contribute to the overall result of the join; why so?
- On the other hand, after the full reduction, there are no “hanging tuples” in \(r_v \) (every tuple participates in the join)
- Similarly, in the evaluation, there are no hanging tuples in \(\text{result}(v) \) (every tuple can be extended to a join tuple)
- Consequently:
 - We compute the correct result
 - The size of each \(\text{result}(v) \) is polynomial in the size of the final output
<table>
<thead>
<tr>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Intuition (1)
Intuition (2)

\[\begin{array}{c}
 x_2 & x_1 \\
 x_3 & x_{12} \\
 x_4 & x_{11} \\
 x_5 & x_{10} \\
 x_6 & x_9 \\
 x_7 & x_8 \\
\end{array}\]

\[\begin{array}{c}
 x_2 & x_1 \\
 x_3 & x_{12} \\
 x_4 & x_{11} \\
 x_5 & x_{10} \\
 x_6 & x_9 \\
 x_7 & x_8 \\
\end{array}\]
Intuition (3)
Tree Decomposition of a Graph

- Let G be a graph
- A **Tree Decomposition** (TD) of G is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called *bag*) of $\text{nodes}(G)$, so that:
 - For every edge $e \in \text{edges}(G)$ there is a node t of T such that $e \subseteq \chi(t)$
 - Every node v of G occurs in a connected subtree of T; that is, the set $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T
 - The *width* of T is $\max\{|\chi(v)| \mid v \in \text{nodes}(T)\} - 1$
 - The *treewidth* of G is the minimal width over all TDs of G
Example (1)
Example (2)
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \mathcal{H} be a hypergraph
- A **Tree Decomposition** (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called *bag*) of $\text{nodes}(\mathcal{H})$, so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq \chi(t)$
 - Every node v of \mathcal{H} occurs in a connected subtree of T; that is, $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T
 - Note: if (T, χ) is a TD of \mathcal{H}, then T is a *join tree* over the bags
Examples
Every hypergraph has a TD!

In what sense is a TD “good”?

Depends on the context!

In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag

This could be achieved if each bag could be *covered* by a small number of relations

Just intuition... Later we show how exactly that helps to get complexity bounds
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
- A **Generalized Hypertree Decomposition** (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:
 - (T, χ) is a tree decomposition of \mathcal{H}
 - λ is a function that maps every node t of T to a subset of $\text{edges}(\mathcal{H})$ that covers $\chi(t)$; that is, $\chi(t) \subseteq \bigcup \lambda(t)$
 - $\bigcup \lambda(t)$ means $\bigcup_{e \in \lambda(t)} e$
 - The **width** of a GHD (T, χ, λ) is the maximal number of hyperedges needed for covering a node; that is $\max \{ |\lambda(t)| \mid t \in \text{nodes}(T) \}$
The generalized hypertree width \((\text{ghw}) \) of a hypergraph \(\mathcal{H} \) is the minimum of the widths of all GHFs of \(\mathcal{H} \).

- The ghw of a CQ expression \(\alpha \) is the ghw of \(\mathcal{H}_\alpha \).
- Claim (easy to prove): \(\alpha \) (or \(\mathcal{H} \)) is acyclic if and only if its ghw is 1.
We now show how a small (bounded) ghw can be used for efficiently computing a join.
For each hyperedge e of \mathcal{H}_α, let:

- R_e be the relation symbol that corresponds to e
- r_e be the relation of I over R_e
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α.
- Given an instance I, we can compute $\alpha(I)$ as follows.
- For each node t of T compute the relation
 \[r(t) := \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right) \]
- Next, for each relation r_i find a node t such that $\chi(t)$ contains all the attributes of R_i and set:
 \[r(t) := r(t) \otimes r_i \]
- That is, delete from $r(t)$ every tuple that cannot be joined with any tuple from r_i.
Now we have the following:

\[\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \]

\[\pi_A(\bigotimes_{i=1}^{m} r_i) = \pi_A(\bigotimes_{t \in \text{nodes}(T)} r(t)) \]

\[\pi_A(\bigotimes_{t \in \text{nodes}(T)} r(t)) \text{ is an acyclic CQ expression} \]

Apply Yannakakis’s to compute \(\pi_A(\bigotimes_{t \in \text{nodes}(T)} r(t)) \)

That’s it!
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]

- Nevertheless, there is a restricted variant of a GHD, called hypertree decomposition, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement

- We do not discuss hypertree decompositions here, but still:

- We define the Hypertree Width of a hypergraph \mathcal{H} as the minimal width over all hypertree decompositions of \mathcal{H}

- Fact: A hypergraph is acyclic if and only if its hypertree width (and ghw) is 1
Theorem

For every constant k, CQ expressions with hypertree width at most k can be evaluated in polynomial total time.\footnote{In fact, polynomial delay [KS06]}
What about Bounded ghw?

- We know that it is intractable to construct, for a given CQ expression, a GHD of width at most k for all constants $k \geq 3$ [GMS09]
- So, the strategy discussed so far (materializing bags) will not work for showing the tractability of CQs with a bounded GHD
- Quite remarkably, Chen and Dalmau [CD05] showed that bounded ghw allows to evaluate Boolean CQs in polynomial time
 - Even if we cannot construct a corresponding GHD
- Again, this gives polynomial delay [KS06]
Theorem

For every constant k, CQ expressions with a generalized hypertree width at most k can be evaluated with polynomial delay.

Stronger Theorem [CD05]
Table of Contents

1. Introduction
2. Preliminaries
3. Acyclic Joins
4. Algorithm for Acyclic Joins (Yannakakis)
5. Joins with Hypertree Decompositions
6. Size Bounds and Worst-Case Optimality
In this part, we focus on a projection-free join query:

\[Q \overset{\text{def}}{=} R_1 \Join \cdots \Join R_k \]

- For \(i = 1, \ldots, k \), denote by \(\text{Att}(R_i) \) the attribute set of \(R_i \).
- Denote by \(\text{Att}(Q) \) the union \(\bigcup_{i=1}^{k} \text{Att}(R_i) \).
- A database \(D \) consists of the relation \(r_i \) over each \(R_i \).
- We denote by \(|r_i| \) the number of tuples in \(r_i \).
Warm-Up Discussion

- How many answers can be for the following queries, in terms of $|r_1|, \ldots, |r_k|$?
 1. $R_1(A) \bowtie R_2(B) \bowtie R_3(C)$
 2. $R_1(A, B) \bowtie R_2(B, C)$
 3. $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A)$
 4. $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A) \bowtie R_4(A, B)$
 5. $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A) \bowtie R_4(A, B, C)$
Rough Bound

- Recall that $Q = R_1 \Join \cdots \Join R_k$
- Suppose that $R_{i_1}, \ldots, R_{i_\ell}$ contain all (i.e., cover the) attributes in $\text{Att}(Q)$.
- Then, each tuple $t \in Q(D)$ is the combination of tuples from $r_{i_1}, \ldots, r_{i_\ell}$ that agree on the common attributes.
 - And some combinations may not be tuples, due to the other relations.
- Q: How many such combinations can there be?
- A: At most $|r_{i_1}| \times \cdots \times |r_{i_\ell}|$
- Hence, $|Q(D)| \leq |r_{i_1}| \times \cdots \times |r_{i_\ell}|$
Rephrase via Edge Cover

- An edge cover of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.
- In the previous slide we established the following:

 If (a_1, \ldots, a_k) is an edge cover of Q, then:

 $$|Q(D)| \leq \prod_{i=1}^{k} |r_i|^{a_i}$$

- This bound, however, is not tight; we get tightness via the fractional edge cover.
Fractional Edge Cover

- An *edge cover* of Q is a sequence $(a_1, \ldots, a_k) \in \{0, 1\}^k$ such that each $A \in \text{Att}$ occurs in at least one R_i with $a_i = 1$.

- A *fractional edge cover* of Q is a sequence (w_1, \ldots, w_k) in $[0, 1]^k$ such that for every $A \in \text{Att}$ we have

$$
\sum_{i \mid A \in \text{Att}(R_i)} w_i \geq 1
$$

- A fractional edge cover (w_1, \ldots, w_k) of Q is *optimal* if $\sum_{i=1}^k w_i$ is minimal.

- Denote by (w_1^*, \ldots, w_k^*) an optimal edge cover of Q.
The AGM Bound
[GM14, AGM13]

Theorem

1. For every fractional edge cover \((w_1, \ldots, w_k) \) of \(Q \) we have
 \[
 |Q(D)| \leq \prod_{i=1}^{k} |r_i|^{w_i}.
 \]

2. For every \(N_0 \in \mathbb{N} \) there is a database \(D \) with \(N > N_0 \) tuples such that
 \[
 |Q(D)| \geq \prod_{i=1}^{k} |r_i|^{w_i^*}
 \]
 and \(|r_i| = |r_j| \) whenever \(w_i^*, w_j^* > 0 \).
Examples

▷ What is the fractional edge cover of the following join?

\[R(A, B) \Join S(B, C) \Join T(C, A) \]

▷ More generally, the **Loomis Whitney** join \(Q^\text{LW}_k \) is the following:

\[
Q^\text{LW}_k \overset{\text{def}}{=} R_1(x_2, \ldots, x_k) \Join R_2(x_1, x_3, \ldots, x_k) \Join \\
\ldots \Join R_k(x_1, x_3, \ldots, x_{k-1})
\]

What is the fractional edge cover of \(Q^\text{LW}_k \)?
LP for Finding the Upper Bound

Minimize: \[\sum_{i=1}^{k} \log(|r_i|) \cdot x_i \] subject to:

\[\forall A \in \text{Att}(Q) : \sum_{i \mid A \in \text{Att}(R_i)} x_i \geq 1 \]

\[\forall R_i : x_i \geq 0 \]
An algorithm for computing Q is **worst-case optimal** if its running time is $O(f(|r_1|, \ldots, |r_k|))$ where $f(n_1, \ldots, n_k)$ is the maximal $|Q(D)|$ over all databases D with $|r_i| = n_i$.

Starting with Ngo et al. [NPRR12], in recent years several worst-case optimal join algorithms have been devised [Vel14, KNRR15, KEK17].

In particular, the running time of these algorithms does not exceed the AGM bound.

(The algorithms themselves are beyond the scope of the course.)

References II

References IV

End of lecture 4

Computing Joins