Principles of Managing Uncertain Data
Lecture 4: Computing Joins

Introduction

We have learned the concepts of data complexity and combined complexity.

We have seen that CQs can be evaluated in polynomial time under data complexity:
- And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)

We have seen that, under combined complexity:
- Boolean CQ evaluation is NP-complete
- CQs cannot be evaluated in polynomial total time, unless P = NP

This Lecture

- In this lecture, we focus on combined complexity
- We have seen an example of a fragment of CQs that can be evaluated in polynomial total time
 - Namely, n-length paths
- We will learn more a general fragment of tractable CQs
 - Acyclic CQs
 - More generally, CQs of a bounded hypertree width
- In addition, we will learn size bounds on (projection-free) joins, and a matching (worst-case optimal) algorithm

Table of Contents

1. Introduction
2. Preliminaries
3. Acyclic Joins
4. Algorithm for Acyclic Joins (Yannakakis)
5. Joins with Hypertree Decompositions
6. Size Bounds and Worst-Case Optimality

Plan

Previous Lecture

- We have learned the concepts of data complexity and combined complexity
- We have seen that CQs can be evaluated in polynomial time under data complexity
- And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)
- We have seen that, under combined complexity:
 - Boolean CQ evaluation is NP-complete
 - CQs cannot be evaluated in polynomial total time, unless P = NP
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) := \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables.

- An atomic formula has the form \(R(t_1, \ldots, t_n) \) where \(R \) is a \(k \)-ary relation symbol and each \(t_i \) is either a variable (in \(x \) or \(y \)) or a constant term.

- \(Q(x) \) is the head, \(\varphi_1(x, y), \ldots, \varphi_m(x, y) \) is the body, and each \(\varphi_i(x, y) \) is a body atom.

- We require every variable in the head to occur at least once in the body.

Result of a CQ

- Let \(Q(x) := \varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be a CQ and an instance, respectively (over the same signature).

- A homomorphism from \(Q \) to \(I \) is a function \(\mu \) that maps every variable of \(Q \) to a constant, such that \(\mu(\varphi_i(x, y)) \) is a fact of \(I \) for every \(i = 1, \ldots, m \).

- \(\mu(\varphi_i(x, y)) \) is the fact that is obtained by replacing every variable \(z \) with the constant \(\mu(z) \).

- If \(\mu \) is a homomorphism from \(Q \) to \(I \), then \(\mu \) is the restriction of \(\mu \) to the variables of \(x \).

- The result of evaluating \(Q \) over \(I \), denoted \(Q(I) \), is the set \(\{ \mu \mid \mu \text{ is a homomorphism from } Q \text{ to } I \} \).

Numerical Reductions

Reduction 1: from Clique

- To understand the difficulty of joins, we will recall the proof of
-\[\text{NP-hardness, and see a new one} \]

- In the first reduction (that we have seen already), we generated a CQ with a single binary relation, repeating many times.

- In the second reduction, we generate a CQ with many ternary relation symbols, but none of them appears more than once in \(Q \); in addition, each relation has precisely seven tuples.

- A CQ without repeated relation symbols is called non-repeating or self-join free.

Reduction 2: from 3-SAT

- Given a propositional formula \(\psi = \varphi_1 \land \cdots \land \varphi_m \) over the variables \(x_1, \ldots, x_n \), where each \(\varphi_i \) is a disjunction of three atomic formulas (each has the form \(x_i \) or \(\neg x_i \)), determine whether \(\psi \) is satisfiable.
Reduction

- Given \(\psi = \varphi_1 \land \cdots \land \varphi_m \) we construct:
 - A relation symbol \(R_i \) for each \(\varphi_i \)
 - An atomic formula \(\phi_i = R_i(x, y, z) \) where \(x, y \) and \(z \) are the variables that appear in \(\varphi_i \)
 - \(Q(x_1, \ldots, x_n) = \phi_1 \land \cdots \land \phi_m \)
 - The instance \(I \) has in the relation \(R_i \) all \(7 \) tuples \((b_1, b_2, b_3) \in \{(0,1),(1,0)\}\) that satisfy \(\phi_i \)
 - That’s it!

Example

- \(\psi: (x \lor y \lor z) \land (\neg x \lor y \lor w) \land (x \lor \neg z \lor \neg w) \)
- \(Q(x, y, z, w): R_1(x, y, z), R_2(x, y, z), R_3(x, z, w) \)

\[
\begin{array}{ccc}
I = & R_1 & R_2 & R_3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Reduction 3: from 3-Coloring

Problem Def. (3-Coloring)

Given a (directed) graph \(G = (V, E) \), determine whether we can assign a color from \{\(r, g, b \}\) to each node, so that no two neighbors get the same color.

From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.
- Given a CQ \(Q \) and an instance \(I \) over a schema \(S \), we can easily construct a schema \(T \), an RA expression \(\alpha \) over \(T \) and an instance \(J \) over \(T \) such that:
 - \(\alpha \) has the form \(\pi_{y_1, \ldots, y_k}(T_1 \bowtie \cdots \bowtie T_m) \) where the \(T_i \) are distinct relation symbols
 - \(\alpha(J) \) and \(Q(I) \) are “the same”
 - That is, there is a straightforward translation between the two
- For example, how would you translate the following CQ?
 - \(Q(x, y) = R(x, y, \text{Avia}), R(y, z, x), S(x, x) \)

Translation

- Let \(Q(x) = \varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be over \(S \)
- Each variable becomes an attribute
- Each body atom \(\varphi_i \) becomes a unique relation schema \(T_i \) with the attributes (variables) that appear in \(\varphi_i \) (in any order)
- Each head variable becomes a projection attribute
- In \(J \), the relation \(T_i \) is obtained by evaluating \(\varphi_i \) over \(I \) as if \(\varphi_i \) is a CQ with all variables in the head
- Example: \(Q(x, y) = R(x, y, \text{Avia}), R(y, z, x), S(x, x) \)
 \[\Rightarrow \pi_{x,y}(T_1(x, y, \text{Avia}), T_2(x, y, z) \bowtie T_3(x))\]
In the remainder of this lecture, a CQ expression is an RA expression of the form
\[\pi_A(R_1 \bowtie \cdots \bowtie R_k) \]

- Every \(R_i \) is a distinct relation symbol (of any arity)
- \(A \) is a sequence of attributes among the \(A_i \)s
- If projection \(\pi \) is redundant, it may be omitted

A hypergraph is a pair \((V, H)\), where \(V \) is a finite set of nodes, and \(H \) is a set of subsets of \(V \), called hyperedges (and sometimes just edges)

If \(H \) is a hypergraph, then we denote by
- \(\text{nodes}(H) \) the set of nodes of \(H \)
- \(\text{edges}(H) \) the set of hyperedges of \(H \)

Let \(\alpha = \pi_A(R_1 \bowtie \cdots \bowtie R_k) \) be a CQ expression
- The hypergraph of \(\alpha \), denoted \(H_\alpha \), has:
 - The attributes in \(\alpha \) as the set of nodes
 - A hyperedge \(e_i \) for each \(R_i \), containing the attributes of \(R_i \)

A join tree of a hypergraph \(H \) is a tree \(T \) with the following properties
- The nodes of \(T \) are the hyperedges of \(H \)
 - In notation, \(\text{nodes}(T) = \text{edges}(H) \)
 - For every \(e \in \text{nodes}(H) \), the nodes of \(T \) that contain \(e \) form a connected subtree of \(T \)
- Example:

An ear of a hypergraph \(H \) is a hyperedge \(e \) of \(H \) such that
- \(e \) is disjoint from all other hyperedges or
- there exists another hyperedge \(e' \) where \(e \setminus e' \) is disjoint from all other hyperedges

An ear removal on \(H \) is the operation of obtaining a new hypergraph \(H' \) by removing an ear \(e \) of \(H \)
- \(\text{nodes}(H') = \text{nodes}(H) \) and \(\text{edges}(H') = \text{edges}(H) \setminus \{e\} \)

Example:
Proposition

Let H be a hypergraph. The following are equivalent:

1. H has a join tree.
2. By repeatedly applying ear removal (in any order), one can eliminate all the hyperedges of H.

If H satisfies the above conditions, then H is said to be acyclic.

You will prove the proposition in a home assignment.

In particular, you will show how to build a join tree for a given H via ear removal efficiently!

(This will be used later in this lecture)

When H is a graph (i.e., every hyperedge has exactly two nodes), acyclicity is the usual notion of graph acyclicity (forest).

In other words, graph acyclicity and hypergraph acyclicity are the same on graphs.

A CQ expression α is acyclic if its associated hypergraph H_α is acyclic.

Which of the following is acyclic?

\[
\begin{align*}
\left(\bigwedge_{i<j} R_{ij}(x_i, x_j) \right) \\
\left(\bigvee_{i<j} R_{ij}(x_i, x_j) \right) \bowtie S(x_1, \ldots, x_n)
\end{align*}
\]

Which of the above can be solved in polynomial total time?

In this part we describe the algorithm of Mihalis Yannakakis [Yan81] for computing acyclic CQs.

The algorithm terminates in polynomial total time.

Recall: polynomial time in the combined size of the input and the output.

Input: CQ expression $\alpha = \pi_A \left(R_1 \bowtie \cdots \bowtie R_k \right)$, instance I

1. Compute a join tree T for H_α.
2. Apply a full reduction to I according to T.

 More specifically, replace source relations with semijoins.
3. Compute $\alpha(I)$ in leaf-to-root order according to T, projecting on only relevant variables.

And eliminating every redundant/irrelevant variable.
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure.
- We will view the join tree as directed and ordered by:
 - Selecting an arbitrary root that all nodes are reachable from.
 - This action determines all directions.
 - Selecting an arbitrary order among every set of siblings.
- In the next slides, denote this (directed & ordered) tree by T.

Intuition on Full Reduction (1)

- The left semijoin of two relations r and s, denoted $r \leftarrow s$, is the relation that is obtained from r by selecting only the tuples that have a matching tuple in s (i.e., are joinable with) s.
- In RA:
\[r \leftarrow s \overset{\text{def}}{=} \pi_A(r \bowtie s) \]
where A is the attribute sequence of r.
- For example, what is $r \leftarrow s$ if:
 - r and s have the same set of attributes?
 - r and s have disjoint sets of attributes?

Referenced Notation

- For each node v of T, let:
 - R_v be the relation symbol that corresponds to v.
 - r_v be the relation of I over R_v.
- Example: $\pi_A(B(x, y, z) \bowtie S(x, u) \bowtie T(y, z, w))$.

Left Semijoin
On the other hand, after the full reduction, there are no tuples that contribute to the overall result of the join; why so?

For each node v, let T_v be the subtree of T rooted at v.

We compute the correct result for all nodes v of T in leaf-to-root order.

1. For each node v of T, let c_v be the set of projected attributes that appear in v.
2. For each node v of T, let T_v be the set of attributes shared by v and its parent (empty if v is the root).
3. For each node v of T, let r_v be the parent of v.
4. For each node v of T, let p_v be the root of the subtree T_v.
5. For each node v of T, let c_v be the children of v.
6. We apply the join as follows:
 - For all nodes v of T in leaf-to-root order do
 - For all modes c of T_v in root-to-leaf order do
 - if c is not the root of T_v then
 - $\text{result}(c) = \emptyset$
 - if c is the root of T_v then
 - $\text{result}(c) = \text{result}(c_v)$
 - The result is $\text{result}(\text{root}(T))$
Tree Decomposition of a Graph

- Let G be a graph
- A Tree Decomposition (TD) of G is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called bag) of $\text{nodes}(G)$, so that:
 - For every edge $e \in \text{edges}(G)$ there is a node t of T such that $e \subseteq (\chi(t))$
 - Every node v of G occurs in a connected subtree of T; that is, the set $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T
 - The width of T is $\max \{|\chi(t)| \mid t \in \text{nodes}(T)\} - 1$
 - The treewidth of G is the minimal width over all TDs of G

Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM'05]
- Let \mathcal{H} be a hypergraph
- A Tree Decomposition (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called bag) of $\text{nodes}(\mathcal{H})$, so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq (\chi(t))$
 - Every node v of \mathcal{H} occurs in a connected subtree of T; that is, the set $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T
 - Note: if (T, χ) is a TD of \mathcal{H}, then T is a join tree over the bags
Quality?

- Every hypergraph has a TD!
- In what sense is a TD “good”?
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
- This could be achieved if each bag could be covered by a small number of relations
- Just intuition... Later we show how exactly that helps to get complexity bounds

Generalized Hypertree Width

- The generalized hypertree width (ghw) of a hypergraph \(H \) is the minimum of the widths of all GHDs of \(H \)
- The ghw of a CQ expression \(\alpha \) is the ghw of \(H_{\alpha} \)
- Claim (easy to prove): \(\alpha \) (or \(H \)) is acyclic if and only if its ghw is 1

Utilizing Bounded ghw

We now show how a small (bounded) ghw can be used for efficiently computing a join

CQ Evaluation with a GHD (1)

- Let \(H \) be a hypergraph
- A Generalized Hypertree Decomposition (GHD) of \(H \) is a triple \((T, \chi, \lambda)\) such that:
 - \((T, \chi, \lambda)\) is a tree decomposition of \(H \)
 - \(\lambda\) is a function that maps every node \(t \) of \(T \) to a subset of edges of \(H \) that covers \(\chi(t) \); that is, \(\chi(t) \subseteq \bigcup \lambda(t) \)
 - \(\bigcup \lambda(t) \) means \(\bigcup_{e \in \lambda(t)} e \)
- The width of a GHD \((T, \chi, \lambda)\) is the maximal number of hyperedges needed for covering a node; that is \(\max \{ |\lambda(t)| \ | t \in \text{nodes}(T)\} \)

Notation

- For each hyperedge \(e \) of \(H_{\alpha} \), let:
 - \(R_e \) be the relation symbol that corresponds to \(e \)
 - \(r_e \) be the relation of \(I \) over \(R_e \)
- Given an instance \(I \), we can compute \(\alpha(I) \) as follows
- For each node \(t \) of \(T \) compute the relation
 \[r(t) := \pi_{\alpha(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right) \]
- Next, for each relation \(r_i \) find a node \(t \) such that \(\chi(t) \) contains all the attributes of \(R_i \) and set:
 \[r(t) = r(t) \otimes r_i \]
- That is, delete from \(r(t) \) every tuple that cannot be joined with any tuple from \(r_i \)
Now we have the following:
- $M_{t_1, t_2} = \pi_A(selfjoin(T)) r(t)$
- $\pi_A(M_{t_1, t_2}) = \pi_A(M_{\text{hyperjoin}(T)} r(t))$
- $\pi_A(M_{\text{hyperjoin}(T)} r(t))$ is an acyclic CQ expression
- Apply Yannakakis’s to compute $\pi_A(M_{\text{hyperjoin}(T)} r(t))$
- That’s it!

It is NP-complete to decide whether a given hypergraph H has a ghw at most k for any constant $k \geq 3$ [GMS09]

Nevertheless, there is a restricted variant of a GHD, called hypertree decomposition, which can be found in polynomial time for every fixed k.
- Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
- We define the Hypertree Width of a hypergraph H as the minimal width over all hypertree decompositions of H

Fact: A hypergraph is acyclic if and only if its hypertree width (and ghw) is 1

For every constant k, CQ expressions with hypertree width at most k can be evaluated in polynomial total time.*

*In fact, polynomial delay [KS06]
In this part, we focus on a projection-free join query:

\[Q \leftarrow R_1 \bowtie \cdots \bowtie R_k \]

- For \(i = 1, \ldots, k \), denote by \(\text{Att}(R_i) \) the attribute set of \(R_i \).
- Denote by \(\text{Att}(Q) \) the union \(\bigcup_{i=1}^k \text{Att}(R_i) \).
- A database \(D \) consists of the relation \(r_i \) over each \(R_i \).
- We denote by \(|r_i| \) the number of tuples in \(r_i \).

Rough Bound

- Recall that \(Q = R_1 \bowtie \cdots \bowtie R_k \).
- Suppose that \(R_{i_1}, \ldots, R_{i_l} \) contain all (i.e., cover the) attributes in \(\text{Att}(Q) \)
- Then, each tuple \(t \in Q(D) \) is the combination of tuples from \(r_{i_1}, \ldots, r_{i_l} \) that agree on the common attributes
 - And some combinations may not be tuples, due to the other relations
 - Q: How many such combinations can there be?
 - A: At most \(|r_{i_1}| \times \cdots \times |r_{i_l}| \)
 - Hence, \(|Q(D)| \leq |r_{i_1}| \times \cdots \times |r_{i_l}| \)

Fractional Edge Cover

- An edge cover of \(Q \) is a sequence \((a_1, \ldots, a_k) \in \{0, 1\}^k \) such that each \(A \in \text{Att} \) occurs in at least one \(R_i \) with \(a_i = 1 \)
- A fractional edge cover of \(Q \) is a sequence \((w_1, \ldots, w_k) \) in \([0, 1]^k \) such that for every \(A \in \text{Att} \) we have
 \[\sum_{i \in \text{Att}(R_i)} w_i \geq 1 \]
- A fractional edge cover \((w_1, \ldots, w_k) \) of \(Q \) is optimal if \(\sum_{i \in \text{Att}(R_i)} w_i \) is minimal
- Denote by \((w_1^*, \ldots, w_k^*)\) an optimal edge cover of \(Q \)

Warm-Up Discussion

- How many answers can be for the following queries, in terms of \([r_1], \ldots, [r_k]\)?
 - \(R_1(A) \bowtie R_2(B) \bowtie R_3(C) \)
 - \(R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A) \bowtie R_4(A, B) \)
 - \(R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, A) \bowtie R_4(A, B, C) \)

AGM Bound

Theorem

- For every fractional edge cover \((w_1, \ldots, w_k) \) of \(Q \) we have
 \[Q(D) \leq \prod_{i=1}^k |r_i|^{w_i} \]
- For every \(N_0 \in \mathbb{N} \) there is a database \(D \) with \(N > N_0 \) tuples such that
 \[Q(D) \geq \prod_{i=1}^k |r_i|^{w_i^*} \]
 and \(|r_i^*| = |r_i| \) whenever \(w^*_i, w_i > 0 \).

Worst-Case Optimality

- An algorithm for computing Q is worst-case optimal if its running time is $O(f(|r_1|, \ldots, |r_n|))$ where $f(n_1, \ldots, n_k)$ is the maximal $O(|D|)$ over all databases D with $|r_i| = n_i$.
- Starting with Ngo et al. [NPRR12], in recent years several worst-case optimal join algorithms have been devised [Vel14, KNRR15, KEK17].
- In particular, the running time of these algorithms does not exceed the AGM bound.

(The algorithms themselves are beyond the scope of the course.)

References

References

References

References
