Assignment 3
Due Dec 22, 2016

Part 1: Core of Universal Solutions

In class, we have seen an example of a solution J and an endomorphism μ over J, such that $\mu(J)$ is not a solution. (“Data Exchange,” Page 35.)

Question 1.1. Recall the example, and explain why $\mu(J)$ is indeed not a solution.

Question 1.2. In this part you will prove the following theorem, originally established by Fagin et al. [2].

Theorem 1 Let (S, T, Σ) be a schema mapping such that Σ consists of s-TGDs, t-TGDs and t-EGDs, let I be a source instance, and let J be target instance. If J is a solution, then every core of J is a solution.

To prove the theorem, we need some standard definitions.

Definitions. Let J be a v-instance, and let μ be an endomorphism over J. Denote by $\mu(J)$ the image of J under μ, that is, the subinstance of J that is obtained from J by replacing every variable x with $\mu(x)$. Let us say that μ is a core endomorphism if $\mu(J)$ is a core of J. For a natural number m, we denote by μ^m the composition of μ with itself m times; that is:

$$\mu^m(x) \overset{\text{def}}{=} \begin{cases} \mu(x) & \text{if } m = 1; \\ \mu(\mu^{m-1}(x)) & \text{if } m > 1. \end{cases}$$

A fixed point of μ is a value x such that $\mu(x) = x$. Finally, we will say that μ is image preserving if every value in the image of μ is a fixed point (that is, μ is the identity function over $\mu(J)$).

Use the following steps to prove Theorem 1.

1. If μ is a core endomorphism, then μ^m is a core endomorphism for all $m > 1$.
2. If μ is a core endomorphism, then μ is an isomorphism over $\mu(J)$.
3. Suppose that (1) μ is a core endomorphism, and (2) μ is not image preserving. There exists some $m > 0$ such that μ^m has a fixed point that μ does not have.
4. There exists a core endomorphism over J that is image preserving.
5. If J is a solution and μ is a core endomorphism that is image preserving, then $\mu(J)$ is a solution.
6. If K is a core of a solution, then K is a solution.

Note: You can use the fact that the cores of a target instance are isomorphic to each other.
Part 2: Rehearsal

Following is a special case of the task of reverse query processing [1].

<table>
<thead>
<tr>
<th>Input:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦ A schema T with Functional Dependencies (FDs);</td>
<td>Construct an instance J over T such that $Q(J) = r$, or determine that no such J exists.</td>
</tr>
<tr>
<td>◦ An acyclic CQ $Q(x_1,\ldots,x_k)$, without constants, over T;</td>
<td></td>
</tr>
<tr>
<td>◦ A k-ary relation r.</td>
<td></td>
</tr>
</tbody>
</table>

1. No instance J exists, but if we eliminated the FDs then it would exist.

2. There are no FDs, and yet, no instance J exists.

Question 2.1. Show examples of input where:

- No instance J exists, but if we eliminated the FDs then it would exist.
- There are no FDs, and yet, no instance J exists.

Question 2.2. Devise a polynomial-time algorithm for solving the task. Prove the correctness of your algorithm, and explain why it terminates in polynomial time.

Note: We use combined complexity here, which means that you cannot assume that S and Q are fixed. In particular, the fact that Q is acyclic does not mean that, given a candidate instance J', you can construct $Q(J')$ in polynomial time!

Hint terms: Data exchange, universal solution, chase, polynomial total time.

Good luck!

References
