Principles of Managing Uncertain Data

Lecture 11: More on Probabilistic Databases
Table of Contents

1. Introduction
2. Markov Logic Networks
3. Probabilistic XML
Many thanks to Dan Suciu for advising on these slides!
Table of Contents

1. **Introduction**
2. **Markov Logic Networks**
3. **Probabilistic XML**
Introduction

So far, we have learned about representations of probabilistic databases.

Focusing on tuple-independent databases (TID), we studied query evaluation in depth.

This lecture: two additional notions of probabilistic databases:

- Markov Logic Networks
- Probabilistic XML
Table of Contents

1 Introduction

2 Markov Logic Networks

3 Probabilistic XML
We wish to guess the missing values; but no reason to prefer one guess to another... yet.
Soft Inference Rules

<table>
<thead>
<tr>
<th>Follows</th>
<th>SoccerFan</th>
<th>OperaFan</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Anna</td>
<td>Anna</td>
<td>Anna</td>
</tr>
<tr>
<td>Bob</td>
<td>Bob</td>
<td>Bob</td>
</tr>
<tr>
<td>Chloe</td>
<td>Chloe</td>
<td>man</td>
</tr>
</tbody>
</table>

\[
(SoccerFan(x) \land \text{Follows}(y, x)) \rightarrow SoccerFan(y) \\
(OperaFan(x) \land \text{Follows}(y, x)) \rightarrow OperaFan(y) \\
\text{Soccer}(x) \leftrightarrow \neg (\text{OperaFan}(x))
\]
Soft Inference Rules

<table>
<thead>
<tr>
<th></th>
<th>Follows</th>
<th></th>
<th>SoccerFan</th>
<th></th>
<th>OperaFan</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>p2</td>
<td></td>
<td>p</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Anna</td>
<td>Bob</td>
<td>Anna</td>
<td>t</td>
<td></td>
<td>Anna</td>
</tr>
<tr>
<td>Bob</td>
<td>Chloe</td>
<td>Bob</td>
<td>?</td>
<td></td>
<td>Bob</td>
</tr>
<tr>
<td>Anna</td>
<td>Chloe</td>
<td>Chloe</td>
<td>?</td>
<td></td>
<td>Chloe</td>
</tr>
</tbody>
</table>

4: \((\text{SoccerFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{SoccerFan}(y)\)

2: \((\text{OperaFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{OperaFan}(y)\)

8: \(\text{Soccer}(x) \leftrightarrow \neg(\text{OperaFan}(x))\)
The semantics of such a database with soft rules is a probability space over the completions of the unknown values.

- How softness and weighting translate into probabilities?
 - Various semantics in the literature, e.g., Probabilistic Datalog [Fuh00], ProbLog [RKT07], Probabilistic Soft Logic [BMG10]

- We will look at one such a translation: Markov Logic Network (MLN) [RD06]
We have a sequence $z = z_1, \ldots, z_n$ of (correlated) random variables, each z_i taking values from a domain $dom(z_i)$.

We consider the representation of a probability space over all possible assignments.
A **factor** over \(z = z_1, \ldots, z_n \) is a function

\[
\phi : \text{dom}(z_1) \times \cdots \times \text{dom}(z_n) \to [0, \infty)
\]

We are typically interested in situations where each factor looks at only a small subset of the variables, e.g.:

\[
\phi(a) = \begin{cases}
2 & \text{if } a_1 = 0 \\
5 & \text{if } a_1 = 1 \text{ and } a_7 = 0 \\
15 & \text{if } a_1 = 1 \text{ and } a_7 = 1
\end{cases}
\]
A factor graph is a representation of a probability space over the assignments to \(z \).

Formally, a **factor graph** for \(z \) is a sequence \(F = \phi_1, \ldots, \phi_m \) of factors over \(z \).

Semantics:

\[
\Pr(z = a) \overset{\text{def}}{=} \frac{1}{Z} \prod_{\phi_i \in F} \phi_i(a)
\]

\(Z \) is a **normalization term**:

\[
Z \overset{\text{def}}{=} \sum_{\mathbf{a}} \prod_{\phi_i \in F} \phi_i(\mathbf{a})
\]
Visually, it is convenient and conventional to represent a factor graph by a bipartite graph with:

- A node v_f for each factor f
- A node u_{z_i} for every random variable z_i in z
- An edge between v_f and u_{z_i} whenever z_i affects f
Example

AnnaSoccerFan
AnnaOperaFan
BobSoccerFan
BobOperaFan
ChloeSoccerFan
ChloeOperaFan

f_1
f_2
f_3
f_4
f_5
f_6
f_7
f_8
f_9
Example: Naïve Bayes Classifier

\[
\Pr(y = c, x = a) = \Pr(y = c) \cdot \prod_{i=1}^{n} \Pr(x_i = a_i \mid y = c)
\]

\[
= \phi(c) \cdot \prod_{i=1}^{n} \phi_i(a_i, c)
\]
Example: Logistic Regression

\[
Pr(y = c, x = a) = \frac{e^{\beta_{c,0} + \sum \beta_{c,i} \cdot a_i}}{Z}
\]
Example: Hidden Markov Model

\[
\Pr(y = c, x = a) = \Pr(y_1 = c_1) \cdot \Pr(x_1 = a_1 \mid y_1 = c_1) \\
\times \Pr(y_2 = c_2 \mid y_1 = c_1) \cdot \Pr(x_2 = a_2 \mid y_2 = c_2) \\
\times \cdots \\
\times \Pr(y_n = c_n \mid y_{n-1} = c_{n-1}) \cdot \Pr(x_n = a_n \mid y_n = c_n)
\]
A Markov Logic Network (MLN) is a formalism for compactly encoding factor graphs using logic

- facts \Rightarrow Boolean random variables
- rules \Rightarrow factors
Some Applications of MLNs

- Entity resolution [SD06]
- Information extraction (extract structured data from text) [NRDS11]
- Robotics (scene analysis) [WD08]
- Social-network analysis
- Bioinformatics (protein interaction)
We have a relational signature \mathcal{R} and a finite domain C of attribute values.

- For example, $\mathcal{R} = \{\text{Follows}/2, \text{SoccerFan}/1, \text{OperaFan}/1\}$ and $C = \{\text{Anna, Bob, Chloe}\}$
- For simplicity, same domain for all attributes
Markov Logic Networks

- A **ground fact** over \mathcal{R} is a fact over \mathcal{R} with values from \mathcal{C}
 - e.g., SoccerFan(Anna), Follows(Bob,Anna)
- A **Markov Logic Network** (MLN) represents a probability space over all possible sets of ground facts
- We view a ground fact f as a random Boolean variable x_f
 - $x_f = \text{true}$ means that the fact f is true (e.g., Anna is indeed a soccer fan)
- An MLN is then a probability space over the x_f, assigning random true/false to each variable
Formal Definition

- An **MLN** over the signature \mathcal{R} and domain \mathcal{C} is a sequence $\langle w_1 : r_1, \ldots, w_k : r_k \rangle$ of weighted rules
 - Each r_i is a propositional formula with free variables
 - Each w_i is a nonnegative number
 - Zeros are important for encoding hard constraints (must hold in every world)

- A **grounding** of a rule r is obtained by replacing the free variables with constants; for example:

\[
(\text{OperaFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{OperaFan}(y)
\]

\[
\Downarrow
\]

\[
(\text{OperaFan}(\text{Anna}) \land \text{Follows}(\text{Bob, Anna})) \rightarrow \text{OperaFan}(\text{Bob})
\]
The MLN $\langle w_1 : r_1, \ldots, w_k : r_k \rangle$ represents a factor graph over the x_f

A possible assignment a to the sequence x of variables represents an instance over \mathcal{R}; we denote it by I_a

- I_a consists of all the facts f such that $a_f = \text{true}$

Each grounding g of r_i provides a factor, denoted ϕ_{g,r_i}

$$\phi_{g,r_i}(a) = \begin{cases} w_i & \text{if } g(r_i) \text{ is true in the assignment } I_a; \\ 1 & \text{otherwise.} \end{cases}$$

What are the random variables that connect to ϕ_{g,r_i}?

Following Poole [Poo03], an MLN rule is called a parametric factor, or parfactor for short

- Arise in other models, e.g., Probabilistic Soft Logic [BMG10]
Example Revisited

<table>
<thead>
<tr>
<th>Follows</th>
<th>SoccerFan</th>
<th>OperaFan</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>p2</td>
<td></td>
</tr>
<tr>
<td>Anna</td>
<td>Bob</td>
<td>Anna</td>
</tr>
<tr>
<td>Bob</td>
<td>Chloe</td>
<td>Bob</td>
</tr>
<tr>
<td>Anna</td>
<td>Chloe</td>
<td>Chloe</td>
</tr>
<tr>
<td>Anna</td>
<td>Chloe</td>
<td>Anna</td>
</tr>
<tr>
<td>Bob</td>
<td>Chloe</td>
<td>Bob</td>
</tr>
<tr>
<td>Anna</td>
<td>Chloe</td>
<td>Chloe</td>
</tr>
</tbody>
</table>

4: \((\text{SoccerFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{SoccerFan}(y)\)

2: \((\text{OperaFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{OperaFan}(y)\)

8: \(\text{Soccer}(x) \leftrightarrow \neg (\text{OperaFan}(x))\)
What are the factors here?

<table>
<thead>
<tr>
<th>Follows</th>
<th>SoccerFan</th>
<th>OperaFan</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Anna</td>
<td>Bob</td>
<td>Anna</td>
</tr>
<tr>
<td>Bob</td>
<td>Chloe</td>
<td>Bob</td>
</tr>
<tr>
<td>Anna</td>
<td>Chloe</td>
<td>Chloe</td>
</tr>
</tbody>
</table>

4: \((\text{SoccerFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{SoccerFan}(y)\)
2: \((\text{OperaFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{OperaFan}(y)\)
8: \text{Soccer}(x) \leftrightarrow \neg (\text{OperaFan}(x))
Core MLN Tasks

- MLNs entail several computational tasks
 - Estimating marginal probability
 - \(z = (x, y, v) \), and given \(x \) and \(y \), compute \(\Pr(y | x) \)
 - Maximum A-Priori (MAP) inference
 - \(z = (x, y) \), and given \(x \), compute \(\arg\max_y \Pr(y | x) \)
 - Weight learning: given examples of domains and worlds, find the most likely rule weights to produce the worlds (fitting)
 - Structure learning: given examples of domains and worlds, find “good” rules and weights that are likely to produce the worlds

- These tasks are usually intractable, and common techniques include heuristic local search (MaxWalkSat), sampling (MCMC), gradient-based optimization, message passing, and symmetry-based simplification (lifted inference)
Jha and Suciu [JS12] show how to translate MLNs to tuple-independent databases

I will show a simplified version of that translation on our example
Translation Example (1)

Rule $r(x, y)$:

$$4: \ (\text{SoccerFan}(x) \land \text{Follows}(y, x)) \rightarrow \text{SoccerFan}(y)$$

1. Initialize an empty TID I
2. Insert into I each ground fact with probability $1/2$
 - SoccerFan(Anna): 0.5, Follows(Bob, Anna): 0.5, ...
3. For each grounding $r(a, b)$ of $r(x, y)$ add a new fact $R(a, b)$ with probability $4/5$

Define:

$$Q_r() := \exists x, y \left[(R(x, y) \land \neg r(x, y)) \lor (\neg R(x, y) \land r(x, y)) \right]$$
Translation Example (2)

- Claim: Our MLN defines the probability distribution \([I]\), restricted to the MLN facts and conditioned on \(\neg Q_r()\)
- Proof idea: view a possible world of \(I\) as composing of two components: MLN facts \((W)\) and \(R\)-facts \((W_R)\)
 - Note: every \(W\) has the same probability in \(I\)
- By using Bayes rule we get:

\[
Pr(W \mid \neg Q_r) = \frac{Pr(\neg Q_r \mid W) \times Pr(W)}{Pr(\neg Q_r)} \sim Pr(\neg Q_r \mid W)
\]
Let us look at $\Pr(\neg Q_r \mid W)$

This is the probability that every $R(a, b)$ exists if and only if $r(a, b)$ holds

Hence:

$$\Pr(\neg Q_r \mid W) = \Pr(\bigwedge_{W \models r(a, b)} R(a, b) \bigwedge_{W \models \neg r(a, b)} \neg R(a, b) \mid W)$$

$$= \left(\prod_{W \models r(a, b)} \frac{4}{5} \right) \times \left(\prod_{W \models \neg r(a, b)} \frac{1}{5} \right) \sim \prod_{W \models r(a, b)} 4 \prod_{W \models \neg r(a, b)} 1$$

$$= \prod_{W \models r(a, b)} 4$$
The probability of a query Q over the MLN is then:

$$
\Pr(I \models Q \mid I \models \neg Q_r) = \frac{\Pr(I \models Q \land \neg Q_r)}{\Pr(I \models \neg Q_r)}
$$

$$
= \frac{\Pr(I \models Q) - \Pr(I \models Q \land Q_r)}{1 - \Pr(I \models Q_r)}
$$
Table of Contents

1. Introduction
2. Markov Logic Networks
3. Probabilistic XML
XML Example

```
<aerial-photo>
  <region>
    <neighborhood>
      <house size="s"> 
        <vehicle type="private"> 
          <neighborhood>
            <factory>
              <facility/>
              <heliport/>
            </factory>
          </neighborhood>
        </vehicle>
      </house>
    </neighborhood>
  </region>
</aerial-photo>
```
Probabilistic XML (p-Document) Example

```
aerial photo
  ↓
region
  ↓
neighborhood
  ↓
house
    ↓
size
      ↓
s
house
    ↓
size
      ↓
m
vehicle
    ↓
type
      ↓
track
      ↓
private

factory
  ↓
facility
  ↓
parking lot
  ↓
heliport
```
The p-Document Model

- A \textit{d-document} is a tree with two types of nodes
 - An \textit{ordinary} node is an XML node with a label (or text)
 - A \textit{distributional} node is an encoding of a probabilistic choice of a random set of children
- The \textit{root} of a p-document is always an ordinary node
- There are various types and representations of distributional nodes:
 - \textit{Independent} choice of children, each child has an associated probability
 - \textit{Mutually-exclusive} choice, children probabilities sum up to (at most) one
 - Shared \textit{random variables} (correlations, similar to pc-tables)
Sampling Example

- aerial photo
- region
 - neighborhood
 - house
 - size: small
 - house
 - size: medium
 - vehicle
 - facility
 - parking lot
- heliport

- aerial photo
- region
 - neighborhood
 - house
 - size: small
 - vehicle
 - facility
 - parking lot
- heliport
Semantics of a p-Document

- A p-document represents a probability space over ordinary XML documents
- To defined this probability space, we need to explain how a random document is being generated/sampled
- Top-down process; for each distributional node \(v \):
 1. Randomly select a subset of \(v \)'s children (according to the local distribution of \(v \))
 2. Throw away unchosen children (and their subtrees)
 3. Eliminate \(v \) by connecting the chosen children directly to \(v \)'s parent
Some Studied Problems

- **Data integration** with probabilistic XML [vKdKA05]
- Evaluating *XPath queries* over p-documents [KKS09, ACK+11]
- Computing the probability of *DTD compatibility* [CKS09]
 - More generally, the probability of acceptance by a *tree automaton*
- Probabilistic XML defined by *probabilistic context-free grammars* (PCFGs) [BKOS10, CK10]
- **Keyword search** over probabilistic XML [LLZW11]

Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv, *Query evaluation over probabilistic XML*, VLDB J. **18** (2009), no. 5, 1117–1140.

End of lecture 11

More on Probabilistic Databases