Principles of Managing Uncertain Data

Lecture 4: Computing Joins
Table of Contents

1. Introduction
2. Acyclic Joins
3. Algorithm for Acyclic Joins (Yannakakis)
4. Joins with Hypertree Decompositions
1. Introduction

2. Acyclic Joins

3. Algorithm for Acyclic Joins (Yannakakis)

4. Joins with Hypertree Decompositions
We have learned the concepts of *data complexity* and *combined complexity*.
Previous Lecture

- We have learned the concepts of *data complexity* and *combined complexity*
- We have seen that CQs can be evaluated in polynomial time under *data complexity*
 - And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)
We have learned the concepts of *data complexity* and *combined complexity*

We have seen that CQs can be evaluated in polynomial time under *data complexity*

And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)

We have seen that, under *combined complexity*:

- Boolean CQ evaluation is NP-complete
We have learned the concepts of *data complexity* and *combined complexity*

We have seen that CQs can be evaluated in polynomial time under *data complexity*

- And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)

We have seen that, under *combined complexity*:
- Boolean CQ evaluation is NP-complete
- CQs cannot be evaluated in polynomial total time, unless P = NP
Today

- Today we consider only *combined complexity*
Today we consider only \textit{combined complexity}.

We have seen an example of a \textit{fragment} of CQs that can be evaluated in polynomial total time:

- Namely, n-length paths.
Today we consider only *combined complexity*

We have seen an example of a *fragment* of CQs that can be evaluated in polynomial total time

- Namely, n-length paths

Today we learn more a general fragment of tractable CQs
Today we consider only *combined complexity*

- We have seen an example of a *fragment* of CQs that can be evaluated in polynomial total time
 - Namely, \(n \)-length paths
- Today we learn more a general fragment of tractable CQs
 - Acyclic CQs
Today we consider only *combined complexity*

- We have seen an example of a *fragment* of CQs that can be evaluated in polynomial total time
 - Namely, n-length paths

- Today we learn more a general fragment of tractable CQs
 - Acyclic CQs
 - More generally, CQs of a bounded *hypertree width*
Recalling Conjunctive Queries

Recall that a Conjunctive Query (CQ) has the form

\[Q(x) \leftarrow \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables.
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) \leftarrow \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables

- An atomic formula has the form \(R(\tau_1, \ldots, \tau_k) \) where \(R \) is a \(k \)-ary relation symbol and each \(\tau_i \) is either a variable (in \(x \) or \(y \)) or a constant term
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) \leftarrow \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables

- An atomic formula has the form \(R(\tau_1, \ldots, \tau_k) \) where \(R \) is a \(k \)-ary relation symbol and each \(\tau_i \) is either a variable (in \(x \) or \(y \)) or a constant term
- \(Q(x) \) is the head, \(\varphi_1(x, y), \ldots, \varphi_m(x, y) \) is the body, and each \(\varphi_i(x, y) \) is a body atom
- We require every variable in the head to occur at least once in the body
Result of a CQ

Let \(Q(x) :- \varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be a CQ and an instance, respectively (over the same signature)
Result of a CQ

- Let $Q(x) :- \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be a CQ and an instance, respectively (over the same signature)

- A **homomorphism** from Q to I is a function μ that maps every variable of Q to a constant, such that $\mu(\varphi_i(x, y))$ is a fact of I for every $i = 1, \ldots, m$

 - $\mu(\varphi_i(x, y))$ is the fact that is obtained by replacing every variable z with the constant $\mu(z)$
Result of a CQ

- Let $Q(x) : \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be a CQ and an instance, respectively (over the same signature)

- A *homomorphism* from Q to I is a function μ that maps every variable of Q to a constant, such that $\mu(\varphi_i(x, y))$ is a fact of I for every $i = 1, \ldots, m$
 - $\mu(\varphi_i(x, y))$ is the fact that is obtained by replacing every variable z with the constant $\mu(z)$

- If μ is a homomorphism from Q to I, then $\mu|_x$ is the restriction of μ to the variables of x
Result of a CQ

- Let $Q(x) := \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be a CQ and an instance, respectively (over the same signature).
- A **homomorphism** from Q to I is a function μ that maps every variable of Q to a constant, such that $\mu(\varphi_i(x, y))$ is a fact of I for every $i = 1, \ldots, m$.
 - $\mu(\varphi_i(x, y))$ is the fact that is obtained by replacing every variable z with the constant $\mu(z)$.
- If μ is a homomorphism from Q to I, then $\mu|_x$ is the restriction of μ to the variables of x.
- The **result** of evaluating Q over I, denoted $Q(I)$, is the set

$$\{\mu|_x \mid \mu \text{ is a homomorphism from } Q \text{ to } I\}$$
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.

In the first reduction (that we have seen already), we generated a CQ with a single binary relation, repeating many times.
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.

In the first reduction (that we have seen already), we generated a CQ with a *single binary relation*, repeating many times.

In the second reduction, we generate a CQ with *many ternary relation symbols*, but none of them appears more than once in \(Q \); in addition, each relation has *precisely seven tuples*:

- A CQ without repeated relation symbols is called *non-repeating* or *self-join free*.
Reduction 1: from Clique

Problem Def. (Clique)

Given a graph $G = (V, E)$ and a number k, determine whether G contains a clique of size k, that is, a subset U of V such that $|U| = k$ and every two nodes in U are neighbours.
Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:

- $S = \{R_E/2\}$
- $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
- $Q_k(x_1, \ldots, x_k) := \land_{1 \leq i < j \leq k} R_E(x_i, x_j)$

For example, suppose that G is the following graph:

```
1 --- 2
|   |
3 --- 4
```

$I_G = \begin{array}{c|c}
1 & 3 \\
2 & 3 \\
2 & 4 \\
3 & 4 \\
\end{array}$

$Q_3 := R_E(X_1, X_2), R_E(X_1, X_3), R(X_2, X_3)$
Reduction 2: from 3-SAT

Problem Def. (3-SAT)

Given a propositional formula \(\psi = \varphi_1 \land \cdots \land \varphi_m \) over the variables \(x_1, \ldots, x_n \), where each \(\varphi_i \) is a disjunction of three atomic formulas (each has the form \(x_i \) or \(\neg x_i \)), determine whether \(\psi \) is satisfiable.
Given $\psi = \varphi_1 \land \cdots \land \varphi_m$ we construct:

- A relation symbol R_i for each φ_i
- An atomic formula $\phi_i = R_i(x, y, z)$ where x, y and z are the variables that appear in φ_i
- $Q(x_1, \ldots, x_n) :\neg \phi_1, \ldots, \phi_m$
- The instance I has in the relation R_i all 7 tuples $(b_1, b_2, b_3) \in \{0, 1\}^3$ that satisfy ϕ_i
Example

\[\psi: (x \lor y \lor z) \land (\neg x \lor y \lor w) \land (x \lor \neg z \lor \neg w) \]
Example

- $\psi: (x \lor y \lor z) \land (\neg x \lor y \lor w) \land (x \lor \neg z \lor \neg w)$
- $Q(x, y, z, w) \equiv R_1(x, y, z), R_2(x, y, w), R_3(x, z, w)$

<table>
<thead>
<tr>
<th>I</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$I = R_1[001] R_2[010] R_3[001]$
From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs
From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs
- Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:
From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs
- Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:
 - α has the form $\pi_{A_1,\ldots,A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.

Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:

- α has the form $\pi_{A_1, \ldots, A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols.
- $\alpha(J)$ and $Q(I)$ are “the same”.
 - That is, there is a straightforward translation between the two.
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.

Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:

- α has the form $\pi_{A_1, \ldots, A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols
- $\alpha(J)$ and $Q(I)$ are “the same”
 - That is, there is a straightforward translation between the two

For example, how would you translate the following CQ?

$$Q(x, y) :\neg R(x, y, \text{Avia}), R(y, z, x), S(x, x)$$
Translation

- Let $Q(x) : - \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
Translation

- Let \(Q(\mathbf{x}) \coloneqq \varphi_1(\mathbf{x}, \mathbf{y}), \ldots, \varphi_m(\mathbf{x}, \mathbf{y}) \) and \(I \) be over \(S \)
- Each variable becomes an attribute
Translation

- Let $Q(x) :- \varphi_1(x,y), \ldots, \varphi_m(x,y)$ and I be over S
- Each *variable* becomes an *attribute*
- Each *body atom* φ_i becomes a unique *relation schema* T_i with the attributes (variables) that appear in φ_i (in any order)
Translation

- Let $Q(x) : \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each variable becomes an attribute
- Each body atom φ_i becomes a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
- Each head variable becomes a projection attribute
Translation

- Let $Q(x) :\neg \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each variable becomes an attribute
- Each body atom φ_i becomes a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
- Each head variable becomes a projection attribute
- In J, the relation T_i is obtained by evaluating φ_i over I as if φ_i is a CQ with all variables in the head
Translation

- Let $Q(x) : \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each *variable* becomes an *attribute*
- Each *body atom* φ_i becomes a unique *relation schema* T_i with the attributes (variables) that appear in φ_i (in any order)
- Each *head variable* becomes a *projection attribute*
- In J, the relation T_i is obtained by evaluating φ_i over I as if φ_i is a CQ with all variables in the head
- Example: $Q(x, y) : \leftarrow R(x, y, \text{Avia}), R(y, z, x), S(x, x)$

$$\Rightarrow \pi_{x,y}(T_1(x, y) \Join T_2(x, y, z) \Join T_3(x))$$
In the remainder of this lecture, a *CQ expression* is an RA expression of the form

$$\pi_A(R_1 \bowtie \cdots \bowtie R_k)$$

- Every R_i is a distinct relation symbol (of any arity),
- A is a sequence of attributes from the A_is
In the remainder of this lecture, a **CQ expression** is an RA expression of the form

\[
\pi_{A}(R_1 \Join \cdots \Join R_k)
\]

- Every \(R_i \) is a distinct relation symbol (of any arity),
- \(A \) is a sequence of attributes from the \(A_i \)s
- If projection \(\pi \) is redundant, it may be omitted
A *hypergraph* is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called *hyperedges* (and sometimes just *edges*).
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by:
- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\).
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by:

- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\)

Let \(\alpha = \pi_A(R_1 \bowtie \cdots \bowtie R_k)\) be a CQ expression.
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by:
- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\).

Let \(\alpha = \pi_A(R_1 \bowtie \cdots \bowtie R_k)\) be a CQ expression.

The hypergraph of \(\alpha\), denoted \(\mathcal{H}_\alpha\), has:
- The attributes in \(\alpha\) as the set of nodes.
- A hyperedge \(e_i\) for each \(R_i\), containing the attributes of \(R_i\).
Example

\[\pi_{x,y}(R(x, y, z) \Join S(x, u) \Join T(y, z, w)) \]

[Diagram of hypergraph \(\mathcal{H}_\alpha \)]
A *join tree* of a hypergraph \mathcal{H} is a tree T with the following properties
A *join tree* of a hypergraph \mathcal{H} is a tree T with the following properties:

- The nodes of T are the hyperedges of \mathcal{H}
- In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$
A join tree of a hypergraph \mathcal{H} is a tree T with the following properties:

- The nodes of T are the hyperedges of \mathcal{H}
 - In notation, nodes$(T) = \text{edges}(\mathcal{H})$
- For every $v \in \text{nodes}(\mathcal{H})$, the nodes of T that contain v form a connected subtree of T
A **join tree** of a hypergraph \mathcal{H} is a tree T with the following properties:

- The nodes of T are the hyperedges of \mathcal{H}
- In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$
- For every $v \in \text{nodes}(\mathcal{H})$, the nodes of T that contain v form a connected subtree of T

Example:

![Join Tree Diagram]
Ear Removal

- An *ear* of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e)
Ear Removal

- An ear of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).
- An ear removal on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}.

Example:
Ear Removal

- An **ear** of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).

- An **ear removal** on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}.

 \quad nodes(\mathcal{H}') = nodes(\mathcal{H}) and edges(\mathcal{H}') = edges(\mathcal{H}) \setminus \{e\}$
Ear Removal

- An **ear** of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).

- An **ear removal** on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}.
 - $\text{nodes}(\mathcal{H}') = \text{nodes}(\mathcal{H})$ and $\text{edges}(\mathcal{H}') = \text{edges}(\mathcal{H}) \setminus \{e\}$

- Example:

```
          u
        /  \\
       /    \
w   z    y   x

\rightarrow

          u
        /  \\
       /    \
  z    y   x

\rightarrow

          u
        /  \\
       /    \
w   z    y   x

\rightarrow

          u
        /  \\
       /    \
w   z    y
```
Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
2. By repeatedly applying ear removal, one can eliminate all the hyperedges of \mathcal{H}.

If \mathcal{H} satisfies the above conditions, then \mathcal{H} is said to be *acyclic*.
Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
Acyclic Hypergraphs

Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
2. By repeatedly applying ear removal, one can eliminate all the hyperedges of \mathcal{H}.
Proposition

Let \(\mathcal{H} \) be a hypergraph. The following are equivalent:

1. \(\mathcal{H} \) has a join tree.
2. By repeatedly applying ear removal, one can eliminate all the hyperedges of \(\mathcal{H} \).

If \(\mathcal{H} \) satisfies the above conditions, then \(\mathcal{H} \) is said to be *acyclic*.
You will prove the proposition in a home assignment
Comments

- You will prove the proposition in a home assignment
- In particular, you will show *how to build a join tree for a given* H *via ear removal*
You will prove the proposition in a home assignment

In particular, you will show *how to build a join tree for a given* \mathcal{H} *via ear removal*

- Efficiently!
- (This will be used later in this lecture)
Comments

- You will prove the proposition in a home assignment
- In particular, you will show how to build a join tree for a given \mathcal{H} via ear removal
 - Efficiently!
 - (This will be used later in this lecture)
- When \mathcal{H} is a graph (i.e., every hyperedge has exactly two nodes), then acyclicity is the usual notion of graph acyclicity (forest)
A CQ expression α is *acyclic* if its associated hypergraph \mathcal{H}_α is acyclic.
A CQ expression α is *acyclic* if its associated hypergraph \mathcal{H}_α is acyclic.

Which of the following is acyclic?

\[
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right)
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \Join S(x_1, \ldots, x_n)
\]
Acyclic CQs

- A CQ expression α is *acyclic* if its associated hypergraph \mathcal{H}_{α} is acyclic.

- Which of the following is acyclic?

\[
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right)
\]

- Which of the above can be solved in polynomial total time?
Table of Contents

1. Introduction

2. Acyclic Joins

3. Algorithm for Acyclic Joins (Yannakakis)

4. Joins with Hypertree Decompositions
In this part we describe the algorithm of Mihalis Yannakakis [Yan81] for computing acyclic CQs. The algorithm terminates in polynomial total time. Recall: polynomial time in the combined size of the input and the output.
Main Steps of The Algorithm

Input: CQ expression $\alpha = \pi_A(R_1 \Join \cdots \Join R_k)$, instance I

1. Compute a join tree T for \mathcal{H}_α
2. Apply a *full reduction* to I according to T
3. Compute $\alpha(I)$ in leaf-to-root order according to T, projecting out every *redundant variable*
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
- We will view the join tree as directed and ordered by:
 - Selecting an arbitrary root that all nodes are reachable from
 - This action determines all directions
 - Selecting an arbitrary order among every set of siblings
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure.
- We will view the join tree as \textit{directed} and \textit{ordered} by:
 - Selecting an arbitrary \textit{root} that all nodes are reachable from
 - This action determines all directions
 - Selecting an arbitrary order among every set of siblings
- In the next slides, denote this (directed \& ordered) tree by T
Notation

- For each node v of T, let:
 - R_v be the relation symbol that corresponds to v
 - r_v be the relation of I over R_v
Notation

- For each node v of T, let:
 - R_v be the relation symbol that corresponds to v
 - r_v be the relation of I over R_v
- Example: $\pi_{x,y}(R(x, y, z) \Join S(x, u) \Join T(y, z, w))$

\[
\begin{tikzpicture}[level distance=1.5cm,
level 1/.style={sibling distance=3.5cm},
level 2/.style={sibling distance=2.5cm}]

 \node {v}
 \node [draw, rectangle, anchor=north east] (x) at (0.5, 0) {x}
 \node [draw, rectangle, anchor=north west] (y) at (0.5, 0) {y}
 \node [draw, rectangle, anchor=north west] (z) at (0.5, 0) {z}

 \node [draw, rectangle, anchor=south east] (y') at (0.1, -1.5) {y'}
 \node [draw, rectangle, anchor=south west] (w) at (0.1, -1.5) {w}
 \node [draw, rectangle, anchor=south west] (z') at (0.1, -1.5) {z'}

 \node [draw, rectangle, anchor=south east] (u) at (0.9, -1.5) {u}
 \node [draw, rectangle, anchor=south west] (x) at (0.9, -1.5) {x}

\end{tikzpicture}
\]

$R_v = R$ \quad $R_{v'} = T$ \quad $R_{v''} = S$
Intuition on Full Reduction (1)
Intuition on Full Reduction (2)
Applying a Full Reduction

- Procedure called *Inside-Out*, using two passes
Procedure called **Inside-Out**, using two passes

1. **Leaf-to-root (inside):**
 1. for all nodes v of T in leaf-to-root order do
 2. if v is not the root of T then
 3. $r_p := r_p \times r_v$, where p is the parent of v
Procedure called *Inside-Out*, using two passes

1. **Leaf-to-root (inside):**

 for all nodes v of T in leaf-to-root order do

 if v is not the root of T then

 $r_p := r_p \times r_v$, where p is the parent of v

2. **Root-to-leaf (out):**

 for all nodes v of T in root-to-leaf order do

 for all children c of v do

 $r_c := r_c \times r_v$
Leaf-to-Root Join

- For each node v of T, let:

 1. for all nodes v of T in leaf-to-root order
do
 2. let c_1, \ldots, c_k be the children of v;
 3. $\text{result}(v) ≜ \pi_{O_v, P_v} \cdot \text{result}(c_1) \cdot \ldots \cdot \text{result}(c_k)$
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
 - P_v be the set of attributes shared by v and its parent (empty for the root)
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
 - P_v be the set of attributes shared by v and its parent (empty for the root)

- We apply the join as follows:

1. for all nodes v of T in leaf-to-root order do
2. let c_1, \ldots, c_k be the children of v;
3. $\text{result}(v) := \pi_{O_v, P_v}(r_v \bowtie \text{result}(c_1) \bowtie \cdots \bowtie \text{result}(c_k))$
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
 - P_v be the set of attributes shared by v and its parent (empty for the root)

- We apply the join as follows:

1. for all nodes v of T in leaf-to-root order do
2. let c_1, \ldots, c_k be the children of v;
3. $\text{result}(v) := \pi_{O_v,P_v}(r_v \bowtie \text{result}(c_1) \bowtie \cdots \bowtie \text{result}(c_k))$

- The result is $\text{result}(\text{root}(T))$
Correctness and Efficiency

- To be proved in the home assignment
Correctness and Efficiency

- To be proved in the home assignment
- Ideas:
 - Following the full reduction, there are no “hanging tuples” in R_v (every tuple participates in the join)
Correctness and Efficiency

- To be proved in the home assignment
- Ideas:
 - Following the full reduction, there are no “hanging tuples” in R_v (every tuple participates in the join)
 - Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple participates in the join)
Correctness and Efficiency

- To be proved in the home assignment
- Ideas:
 - Following the full reduction, there are no “hanging tuples” in R_v (every tuple participates in the join)
 - Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple participates in the join)
 - Consequently, the size of each $\text{result}(v)$ is polynomial in that of the final output
Table of Contents

1. Introduction
2. Acyclic Joins
3. Algorithm for Acyclic Joins (Yannakakis)
4. Joins with Hypertree Decompositions
Intuition (1)
Intuition (2)
Intuition (2)
Intuition (2)
Intuition (3)
Intuition (3)
Intuition (3)
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \mathcal{H} be a hypergraph
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A *Tree Decomposition* (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A *Tree Decomposition* (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A **Tree Decomposition (TD)** of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called **bag**) of $\text{nodes}(\mathcal{H})$, so that:
Definitions of this part taken from Gottlob et al. [GGM+05]

Let \mathcal{H} be a hypergraph

A *Tree Decomposition* (TD) of \mathcal{H} is a pair (T, χ) with the following properties:

- T is a tree
- χ is a function that maps every node t of T to a subset (called *bag*) of $\text{nodes}(\mathcal{H})$, so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq \chi(v)$
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺ 05]
- Let \mathcal{H} be a hypergraph
- A **Tree Decomposition (TD)** of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called bag) of nodes(\mathcal{H}), so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq \chi(v)$
 - Every node v of \mathcal{H} occurs in a connected subtree of T; that is, $\{t \in \text{nodes}(T) \mid v \in \chi(t)\}$ induces a connected subtree of T
Definitions of this part taken from Gottlob et al. [GGM⁺05]

Let \mathcal{H} be a hypergraph

A *Tree Decomposition* (TD) of \mathcal{H} is a pair (T, χ) with the following properties:

- T is a tree
- χ is a function that maps every node t of T to a subset (called *bag*) of $\text{nodes}(\mathcal{H})$, so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq \chi(t)$
 - Every node v of \mathcal{H} occurs in a connected subtree of T; that is,\{
 t \in \text{nodes}(T) \mid v \in \chi(t)\}\text{ induces a connected subtree of } T

Note: if (T, χ) is a TD of \mathcal{H}, then T is a *join tree* over the bags
Another Example (Think Join)
Another Example (Think Join)
Every hypergraph has a TD!
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
- This could be achieved if each bag could be *covered* by a small number of relations
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
- This could be achieved if each bag could be *covered* by a small number of relations
- Just intuition... Later we show how exactly that helps to get complexity bounds
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
- A *Generalized Hypertree Decomposition* (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
- A Generalized Hypertree Decomposition (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:
 - (T, χ) is a tree decomposition of \mathcal{H}
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
- A Generalized Hypertree Decomposition (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:
 - (T, χ) is a tree decomposition of \mathcal{H}
 - λ is a function that maps every node t of T to a subset of edges(\mathcal{H}) that covers $\chi(t)$; that is, $\chi(t) \subseteq \bigcup \lambda(t)$
 - $\bigcup \lambda(t)$ means $\bigcup_{e \in \lambda(t)} e$
Let \mathcal{H} be a hypergraph

A Generalized Hypertree Decomposition (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:

- (T, χ) is a tree decomposition of \mathcal{H}
- λ is a function that maps every node t of T to a subset of edges(\mathcal{H}) that covers $\chi(t)$; that is, $\chi(t) \subseteq \bigcup \lambda(t)$
 - $\bigcup \lambda(t)$ means $\bigcup_{e \in \lambda(t)} e$

The width of a GHD (T, χ, λ) is the maximal number of hyperedges needed for covering a node; that is $$\max \{|\lambda(t)| \mid t \in \text{nodes}(T)\}$$
The generalized hypertree width (\(ghw\)) of a hypergraph \(\mathcal{H}\) is the minimum of the widths of all GHDs of \(\mathcal{H}\).
The generalized hypertree width (\(\text{ghw}\)) of a hypergraph \(\mathcal{H}\) is the minimum of the widths of all GHDs of \(\mathcal{H}\).

The ghw of a CQ expression \(\alpha\) is the ghw of \(\mathcal{H}_\alpha\).
The generalized hypertree width \((\text{ghw})\) of a hypergraph \(\mathcal{H}\) is the \textit{minimum of the widths of all GHDs} of \(\mathcal{H}\).

The \(\text{ghw}\) of a CQ expression \(\alpha\) is the \(\text{ghw}\) of \(\mathcal{H}_\alpha\).

Claim (easy to prove): \(\alpha\) (or \(\mathcal{H}\)) is acyclic if and only if its \(\text{ghw}\) is 1.
We now show how a small (bounded) ghw can be used for efficiently computing a join
For each hyperedge e of \mathcal{H}_α, let:

- R_e be the relation symbol that corresponds to e
- r_e be the relation of I over R_e
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α
Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α

Given an instance I, we can compute $\alpha(I)$ as follows
Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α.

Given an instance I, we can compute $\alpha(I)$ as follows:

For each node t of T compute the relation

$$r(t) \overset{\text{def}}{=} \pi_{\chi(t)} \left(\bigtriangleup_{e \in \lambda(t)} r_e \right)$$
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α
- Given an instance I, we can compute $\alpha(I)$ as follows
- For each node t of T compute the relation
 \[r(t) \overset{\text{def}}{=} \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right) \]

- Next, for each relation r_i find a node t such that $\chi(t)$ contains all the attributes of R_i and set:
 \[r(t) := r(t) \bowtie r_i \]
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of H_α
- Given an instance I, we can compute $\alpha(I)$ as follows
- For each node t of T compute the relation

$$r(t) \overset{\text{def}}{=} \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right)$$

- Next, for each relation r_i find a node t such that $\chi(t)$ contains all the attributes of R_i and set:

$$r(t) := r(t) \bigotimes r_i$$

- That is, delete from $r(t)$ every tuple that cannot be joined with any tuple from r_i
Now we have the following:
Now we have the following:

\[\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \]
Now we have the following:

\[\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \]
\[\pi_A \left(\bigotimes_{i=1}^{m} r_i \right) = \pi_A \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right) \]
Now we have the following:

1. $\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t)$
2. $\pi_A\left(\bigotimes_{i=1}^{m} r_i\right) = \pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$
3. $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$ is an *acyclic CQ expression*
CQ Evaluation with a GHD (2)

- Now we have the following:
 - $\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t)$
 - $\pi_A\left(\bigotimes_{i=1}^{m} r_i\right) = \pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$
 - $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$ is an acyclic CQ expression

- Apply Yannakakis’s to compute $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t)\right)$
Now we have the following:

- $\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t)$
- $\pi_A\left(\bigotimes_{i=1}^{m} r_i \right) = \pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$
- $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$ is an **acyclic CQ expression**

- Apply Yannakakis’s to compute $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$
- That’s it!
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \(\mathcal{H} \) has a ghw at most \(k \) for any constant \(k \geq 3 \) [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called \textit{hypertree decomposition}, which can be found in polynomial time for every fixed \(k \)
 - Basically, it is a GHD with an additional requirement
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called \textit{hypertree decomposition}, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09].
- Nevertheless, there is a restricted variant of a GHD, called hypertree decomposition, which can be found in polynomial time for every fixed k.
 - Basically, it is a GHD with an additional requirement.
- We do not discuss hypertree decompositions here, but still:
- We define the Hypertree Width of a hypergraph \mathcal{H} as the minimal width over all hypertree decompositions of \mathcal{H}.
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called *hypertree decomposition*, which can be found in polynomial time for every fixed k:
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
- We define the *Hypertree Width* of a hypergraph \mathcal{H} as the minimal width over all hypertree decompositions of \mathcal{H}
- Fact: A hypergraph is acyclic if and only if its hypertree width (and ghw) is 1
Theorem

For every constant k, CQ expressions with hypertree width at most k can be evaluated in polynomial total time.\(^a\)

\(^a\)In fact, polynomial delay [KS06]
References

End of lecture 4

Computing Joins