Principles of Managing Uncertain Data

Lecture 8: Consistent Query Answering
Many thanks to Jef Wijsen for helping to create these slides!
Previous Lecture

- Defined *inconsistent databases* and *repairs*
- Defined *Consistent Query Answering* (CQA)
Defined *inconsistent databases* and *repairs*

Defined *Consistent Query Answering* (CQA)

Saw a schema with primary-key constraints and a CQ where:

- CQA can be translated into a formula in *First Order Logic* (FO) over the inconsistent instance
 - Hence, computable in polynomial time
- CQA is *coNP-hard*
- CQA *cannot be phrased in FO* over the inconsistent instance, but is still *computable in polynomial time*
This Lecture

- We will focus on schemas with primary-key constraints, and CQs \textit{without self joins}
 - That is, CQs where each relation occurs at most once
This Lecture

- We will focus on schemas with primary-key constraints, and CQs *without self joins*
 - That is, CQs where each relation occurs at most once
- We will learn a recent result that shows how to distinguish between the three cases
This Lecture

- We will focus on schemas with primary-key constraints, and CQs *without self joins*
 - That is, CQs where each relation occurs at most once
- We will learn a recent result that shows how to distinguish between the three cases
- Such a result is called a *trichotomy*, since it classifies all cases into three pairwise-disjoint categories
We will focus on schemas with primary-key constraints, and CQs without self joins

That is, CQs where each relation occurs at most once

We will learn a recent result that shows how to distinguish between the three cases

Such a result is called a trichotomy, since it classifies all cases into three pairwise-disjoint categories

We will see how to rewrite CQA into SQL in the case of FO rewritability
Table of Contents

1 Introduction

2 Trichotomy Theorem

3 Attacks

4 Refined Trichotomy

5 FO Rewriting with SQL
In this lecture we consider only schemas $S = (\mathcal{R}, \Sigma)$ such that Σ consists of primary keys.
In this lecture we consider only schemas \(S = (R, \Sigma) \) such that \(\Sigma \) consists of primary keys.

That is:

- For every relation name \(R \in \mathcal{R} \) there is a unique key constraint \(R : X \to Y \) in \(\Sigma \).
- There are no other constraints in \(\Sigma \).
In this lecture we consider only schemas $S = (\mathcal{R}, \Sigma)$ such that
\(\Sigma \) consists of primary keys

That is:
- For every relation name $R \in \mathcal{R}$ there is a unique key constraint $R : X \rightarrow Y$ in Σ
- There are no other constraints in Σ

Note: “no key” is the same as “left-hand side contains all attributes”
In this lecture we consider only schemas \(S = (\mathcal{R}, \Sigma) \) such that \(\Sigma \) consists of primary keys.

That is:

- For every relation name \(R \in \mathcal{R} \) there is a unique key constraint \(R : X \rightarrow Y \) in \(\Sigma \).
- There are no other constraints in \(\Sigma \).

Note: “no key” is the same as “left-hand side contains all attributes.”

In our examples we underline the key attributes.

For instance, if \(\mathcal{R} \) contains \(R(A, B, C, D) \) then \(R(x, y, z, w) \) means that \(\Sigma \) contains the key constraint \(R : AB \rightarrow CD \).
CQs without Self Joins

- Recall: a CQ over a signature \mathcal{R} is a query of the form:

$$Q(x) : \exists y [\varphi_1(x, y) \land \cdots \land \varphi_k(x, y)]$$

where each $\varphi_k(x, y)$ is an atomic query

- Each φ_i is called an **atom** of Q
CQs without Self Joins

- Recall: a CQ over a signature R is a query of the form:

\[Q(x) :- \exists y \left[\varphi_1(x, y) \land \cdots \land \varphi_k(x, y) \right] \]

where each $\varphi_k(x, y)$ is an atomic query

- Each φ_i is called an atom of Q

- We say that Q has no self joins if no two distinct atoms use the same relation name
CQs without Self Joins

- Recall: a CQ over a signature \mathcal{R} is a query of the form:

$$Q(x) :\exists y [\varphi_1(x, y) \land \cdots \land \varphi_k(x, y)]$$

where each $\varphi_k(x, y)$ is an atomic query.

- Each φ_i is called an atom of Q.

- We say that Q has no self joins if no two distinct atoms use the same relation name.

- We say that Q is Boolean if x is empty; in that case, Q is either true or false on a given instance I.
Definition (Consistent Answers)

Let $S = (R, \Sigma)$ be a schema, Q a query over S, and I an inconsistent instance over S. A tuple a is a *consistent answer* if $a \in Q(J)$ for every repair J. We denote by $\text{Consistent}_{\Sigma}^Q(I)$ the set of all consistent answers. Hence, we have:

$$\text{Consistent}_{\Sigma}^Q(I) = \bigcap_{J \in \text{Repairs}_\Sigma(I)} Q(J)$$
Recalling Data Complexity

- Recall: in *data complexity* we fix the schema and query, and only the instance I is considered input
Recalling Data Complexity

- Recall: in *data complexity* we fix the schema and query, and only the instance I is considered input
- Effectively, every schema S and query Q define a separate computational problem $P_{S,Q}$
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a CQ without self joins. Assume that $P \neq \text{NP}$. Then exactly one of the following is true.

1. Consistent Q can be formulated as a query in FO (hence, computable in polynomial time).
2. Consistent Q cannot be formulated as a query in FO, but is still computable in polynomial time.
3. Testing whether Consistent Q is empty is NP-complete.
Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a CQ without self joins. Assume that $P \neq NP$. Then exactly one of the following is true.

1. $\text{Consistent}^Q_\Sigma$ can be formulated as a query in FO (hence, computable in polynomial time).
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a CQ without self joins. Assume that $P \neq \text{NP}$. Then exactly one of the following is true.

1. $\text{Consistent}^Q_{\Sigma}$ can be formulated as a query in FO (hence, computable in polynomial time).

2. $\text{Consistent}^Q_{\Sigma}$ cannot be formulated as a query in FO, but is still computable in polynomial time.
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a CQ without self joins. Assume that $P \neq NP$. Then exactly one of the following is true.

1. $\text{Consistent}^{Q}_{\Sigma}$ can be formulated as a query in FO (hence, computable in polynomial time).
2. $\text{Consistent}^{Q}_{\Sigma}$ cannot be formulated as a query in FO, but is still computable in polynomial time.
3. Testing whether $\text{Consistent}^{Q}_{\Sigma}$ is empty is NP-complete.
Theorem [KW15]

Let \(S = (\mathcal{R}, \Sigma) \) be a schema, such that \(\Sigma \) consists of primary keys. Let \(Q \) be a CQ without self joins. Assume that \(P \neq \text{NP} \). Then exactly one of the following is true.

1. **Consistent** \(\frac{Q}{\Sigma} \) can be formulated as a query in FO (hence, computable in polynomial time).

2. **Consistent** \(\frac{Q}{\Sigma} \) cannot be formulated as a query in FO, but is still computable in polynomial time.

3. Testing whether **Consistent** \(\frac{Q}{\Sigma} \) is empty is NP-complete.

Moreover, we can compute in polynomial time (in \(S \) and \(Q \)) in which case we are.
Historical Notes I

- **2005**: Fuxman and Miller [FM05] claim a dichotomy for a class of conjunctive queries without self joins

 - A flaw in their proof and result discovered by Wijsen [Wij10b]

- **2010**: Wijsen [Wij10a] establishes a dichotomy in FO rewritability for *acyclic CQs without self joins*

- **2012**: Kolaitis and Pema [KP12] prove a dichotomy (P vs coNP-complete) for *CQs with two atoms and no self joins*
Historical Notes II

- **2013**: Fontaine [Fon13] establishes an explanation on why it is difficult to establish dichotomies for (U)CQs with self joins
 - Basically, it entails solving a long standing open problem
- **2014**: Koutris and Suciu [KS14] prove a dichotomy for CQs without self joins, where every relation is binary (with a key)
- **2015**: Koutris and Wijsen [KW15] prove a trichotomy for all CQs without self joins
 - That is, the trichotomy we learn here
Throughout this section, we fix a schema $\mathcal{S} = (\mathcal{R}, \Sigma)$ and a CQ Q.
Throughout this section, we fix a schema $\mathcal{S} = (\mathcal{R}, \Sigma)$ and a CQ Q

- Σ consists of primary keys (one for each relation)
- Q has no self joins
Throughout this section, we fix a schema $S = (\mathcal{R}, \Sigma)$ and a CQ Q

- Σ consists of primary keys (one for each relation)
- Q has no self joins

Recall that for such Σ, a *repair* is a maximal consistent subset of I
Throughout this section, we fix a schema $S = (\mathcal{R}, \Sigma)$ and a CQ Q

- Σ consists of primary keys (one for each relation)
- Q has no self joins

Recall that for such Σ, a *repair* is a maximal consistent subset of I

We first assume that Q is Boolean (that is, there are no variables in the head)

- Hence, the goal is to determine whether Q is true in every repair
Notation

- We denote by:
 - $\text{Atoms}(Q)$ the set of atoms of Q
 - $\text{Var}(Q)$ the set of all the variables of Q
 - α_R the atom of Q over the relation name R
 - R_α the relation name of the atom α
We denote by:

- \(\text{Atoms}(Q) \) the set of atoms of \(Q \)
- \(\text{Var}(Q) \) the set of all the variables of \(Q \)
- \(\alpha_R \) the atom of \(Q \) over the relation name \(R \)
- \(R_\alpha \) the relation name of the atom \(\alpha \)

For \(\alpha \in \text{Atoms}(Q) \), we denote by:

- \(\text{Var}(\alpha) \) the variables that occur in \(\alpha \)
- \(\text{KVar}(\alpha) \) the variables that occur in key attributes of \(R_\alpha \)
Example

\[Q() :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
Example

\[Q() \ :- \ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

\[\text{Atoms}(Q) = \{ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \} \]
Example

\[Q() \gets R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- Atoms\((Q) = \{ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \} \)
- Var\((Q) = \{ x, y, z, w, u \} \)
Example

\[Q() \ :- \ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{Atoms}(Q) = \{ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \} \)
- \(\text{Var}(Q) = \{ x, y, z, w, u \} \)
- \(\alpha_S = S(x, z, w) \)
Example

\[
Q() \vdash R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)
\]

- \(\text{Atoms}(Q) = \{R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)\}\)
- \(\text{Var}(Q) = \{x, y, z, w, u\}\)
- \(\alpha_S = S(x, z, w)\)
- \(\alpha = \alpha_R = R(x, a, y) \Rightarrow R_\alpha = R, \text{Var}(\alpha) = \{x, y\}, \text{KVar}(\alpha) = \{x\}\)
Example

\[Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- Atoms\((Q)\) = \{R\((x, a, y)\), S\((x, z, w)\), T\((z, y, u)\), U\((b, z)\)\}
- Var\((Q)\) = \{x, y, z, w, u\}
- \(\alpha_S = S(x, z, w)\)
- \(\alpha = \alpha_R = R(x, a, y) \Rightarrow R_\alpha = R, \ Var(\alpha) = \{x, y\}, KVar(\alpha) = \{x\}\)
- \(\alpha = S(x, z, w) \Rightarrow R_\alpha = S, \ Var(\alpha) = \{x, z, w\}, KVar(\alpha) = \{x\}\)
Example

\[Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{Atoms}(Q) = \{ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \} \)
- \(\text{Var}(Q) = \{ x, y, z, w, u \} \)
- \(\alpha_S = S(x, z, w) \)
- \(\alpha = \alpha_R = R(x, a, y) \Rightarrow R_\alpha = R, \ Var(\alpha) = \{ x, y \}, \ KVar(\alpha) = \{ x \} \)
- \(\alpha = S(x, z, w) \Rightarrow R_\alpha = S, \ Var(\alpha) = \{ x, z, w \}, \ KVar(\alpha) = \{ x \} \)

We denote constants by non-italic letters from the beginning of the alphabet (e.g., a and b), as opposed to variables (e.g., x and y).
We define the following set of functional dependencies (FDs):

\[
\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \}
\]
FDs among Variables

- We define the following set of functional dependencies (FDs):
 \[
 \text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \to \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \}\]

- \(\text{FD}^+(Q)\) denotes the set of all FDs over \(\text{Var}(Q)\) that are logically implied from \(\text{FD}(Q)\)
We define the following set of functional dependencies (FDs):

\[FD(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \} \]

- \(FD^+(Q) \) denotes the set of all FDs over \(\text{Var}(Q) \) that are logically implied from \(FD(Q) \)
- Equivalently (by Armstrong’s axioms), \(FD^+(Q) \) is obtained from \(FD(Q) \) by repeatedly applying the following rules:
We define the following set of functional dependencies (FDs):

\[\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \} \]

- \(\text{FD}^+(Q) \) denotes the set of all FDs over \(\text{Var}(Q) \) that are logically implied from \(\text{FD}(Q) \)
- Equivalently (by Armstrong’s axioms), \(\text{FD}^+(Q) \) is obtained from \(\text{FD}(Q) \) by repeatedly applying the following rules:
 - \(X \rightarrow X’ \) whenever \(X’ \subseteq X \) (reflexivity)
FDs among Variables

- We define the following set of functional dependencies (FDs):

\[\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \} \]

- \(\text{FD}^+(Q) \) denotes the set of all FDs over \(\text{Var}(Q) \) that are logically implied from \(\text{FD}(Q) \)

- Equivalently (by Armstrong’s axioms), \(\text{FD}^+(Q) \) is obtained from \(\text{FD}(Q) \) by repeatedly applying the following rules:
 - \(X \rightarrow X' \) whenever \(X' \subseteq X \) (reflexivity)
 - If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \) (transitivity)
FDs among Variables

- We define the following set of functional dependencies (FDs):
 \[
 \text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \rightarrow \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \}
 \]

- \(\text{FD}^+(Q)\) denotes the set of all FDs over \(\text{Var}(Q)\) that are logically implied from \(\text{FD}(Q)\)

- Equivalently (by Armstrong’s axioms), \(\text{FD}^+(Q)\) is obtained from \(\text{FD}(Q)\) by repeatedly applying the following rules:
 - \(X \rightarrow X’\) whenever \(X’ \subseteq X\) (reflexivity)
 - If \(X \rightarrow Y\) and \(Y \rightarrow Z\), then \(X \rightarrow Z\) (transitivity)
 - If \(X \rightarrow Y\), then \(X \cup Z \rightarrow Y \cup Z\) (augmentation)
Example

\[Q() \Leftarrow R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{FD}(Q) = \{ x \rightarrow y, x \rightarrow zw, zy \rightarrow u, \emptyset \rightarrow z \} \)
Example

\[Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{FD}(Q) = \{ x \rightarrow y, x \rightarrow zw, zy \rightarrow u, \emptyset \rightarrow z \} \)
- \(\text{FD}^+(Q) = \{ x \rightarrow yzwu, y \rightarrow zu, u \rightarrow u, \ldots \} \cup \text{FD}(Q) \)
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$(\text{KVar}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an **external dependent** of α if x is determined from the key of α even without α; that is:

$$\left(\text{KVar}(\alpha) \rightarrow x \right) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an **external dependent** of α if x is determined from the key of α even without α; that is:

$$(\text{KVar}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.
- Example: $Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
External Dependency

- For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$\left(K\text{Var}(\alpha) \rightarrow x \right) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in K\text{Var}(\alpha)$ is an external dependent of α
- Example: $Q() :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - Which variables are external dependents of α_R?
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$(K\text{Var}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$

Observe that every $x \in K\text{Var}(\alpha)$ is an external dependent of α

Example: $Q() : - R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$

Which variables are external dependents of α_R? x, z, w
External Dependency

- For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an \textit{external dependent} of α if x is determined from the key of α even without α; that is:

$$\left(\text{KVar}(\alpha) \rightarrow x \right) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.
- Example: $Q() \vdash R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - Which variables are external dependents of α_R? x, z, w
 - Which variables are external dependents of α_S?
For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an external dependent of α if x is determined from the key of α even without α; that is:

$$(\text{KVar}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$

Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α.

Example: $Q() \defeq R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$

- Which variables are external dependents of α_R? x, z, w
- Which variables are external dependents of α_S? x, y, z, u
External Dependency

- For $\alpha \in \text{Atoms}(Q)$ and $x \in \text{Var}(Q)$, we say that x is an \textit{external dependent} of α if x is determined from the key of α even without α; that is:

$$(\text{KVar}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})$$

- Observe that every $x \in \text{KVar}(\alpha)$ is an external dependent of α
- Example: $Q() :- R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - \textit{Which variables are external dependents of α_R?} x, z, w
 - \textit{Which variables are external dependents of α_S?} x, y, z, u
- If x is \textbf{not} an external dependent of α, then we say that x is \textit{externally independent} of α
Let α and γ be two distinct atoms of Q.

We say that α **attacks** γ if there is a sequence β_1, \ldots, β_n of atoms such that:

\[\alpha = \beta_1 \text{ and } \beta_n = \gamma \]

Every $\text{Var}(\beta_i) \cap \text{Var}(\beta_{i+1})$ contains at least one variable that is externally independent of α.
Let α and γ be two distinct atoms of Q

We say that α **attacks** γ if there is a sequence β_1, \ldots, β_n of atoms such that:

- $\alpha = \beta_1$ and $\beta_n = \gamma$
Let α and γ be two distinct atoms of Q

We say that α attacks γ if there is a sequence β_1, \ldots, β_n of atoms such that:

- $\alpha = \beta_1$ and $\beta_n = \gamma$
- Every $\text{Var}(\beta_i) \cap \text{Var}(\beta_{i+1})$ contains at least one variable that is externally independent of α
If β and γ are atoms, then we denote by $\beta \overset{x}{\sim}_R \gamma$ the fact that x is a variable in $\text{Var}(\beta) \cap \text{Var}(\gamma)$ that is externally independent of α_R.
If β and γ are atoms, then we denote by $\beta \sim^x_R \gamma$ the fact that x is a variable in $\text{Var}(\beta) \cap \text{Var}(\gamma)$ that is externally independent of α_R.

Hence, α attacks γ if and only if there exists a sequence

$$\beta_1 \sim^1_R \beta_2 \sim^2_R \cdots \sim^{n-1}_R \beta_n$$

where $\beta_1 = \alpha$, $R = R_\alpha$, and $\beta_n = \gamma$.
Examples

$$Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$$
Examples

\(Q() \; :- \; R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \)

- \(R(x, a, y) \) attacks \(T(z, y, u) \):
 \[R(x, a, y) \rightarrow^R T(z, y, u) \]
Examples

\[
Q() \leftarrow R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)
\]

- \(R(x, a, y)\) attacks \(T(z, y, u)\):

\[
R(x, a, y) \underset{R}{\sim} T(z, y, u)
\]

- \(U(b, z)\) attacks all other atoms:

\[
U(b, z) \underset{U}{\sim} S(x, z, w) \underset{U}{\sim} R(x, a, y) \underset{U}{\sim} T(z, y, u)
\]
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise

- Example: $Q() \leftarrow R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise

- Example: $Q(\,):= R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - $R(x, a, y)$ weakly attacks $T(z, y, u)$
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise

- Example: $Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - $R(x, a, y)$ weakly attacks $T(z, y, u)$
 - $U(b, z)$ strongly attacks all other atoms
The *attack graph* of Q is the directed graph $G = (V, E)$ where:

- V is $\text{Atoms}(Q)$
- There is an edge (α, γ) whenever α attacks γ
The attack graph of Q is the directed graph $G = (V, E)$ where:

- V is $\text{Atoms}(Q)$
- There is an edge (α, γ) whenever α attacks γ

An edge (α, γ) is:

- weak if α weakly attacks γ (i.e., $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$)
- strong if α strongly attacks γ
Example

$$Q() : \neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$$
Table of Contents

1. Introduction
2. Trichotomy Theorem
3. Attacks
4. Refined Trichotomy
5. FO Rewriting with SQL
Refined Trichotomy (Boolean case)

Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. If G is acyclic, then $\text{Consistent}_{Q, \Sigma}$ is expressible in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}_{Q, \Sigma}$ can be computed in polynomial time.
3. If G has a cycle with a strong edge, then it is coNP-complete to decide whether $\text{Consistent}_{Q, \Sigma}$ is true on a given instance.
Theorem [KW15]

Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if $\text{Consistent}^Q_\Sigma$ is expressible in FO.
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if $\text{Consistent}_{Q}^{\Sigma}$ is expressible in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}_{Q}^{\Sigma}$ can be computed in polynomial time.
Theorem [KW15]

Let \(S = (\mathcal{R}, \Sigma) \) be a schema, such that \(\Sigma \) consists of primary keys. Let \(Q \) be a Boolean CQ without self joins, and let \(G \) be the attack graph of \(Q \).

1. \(G \) is acyclic if and only if \(\text{Consistent}_{Q, \Sigma} \) is expressible in FO.
2. If \(G \) has cycles, but no cycle contains a strong edge, then \(\text{Consistent}_{Q, \Sigma} \) can be computed in polynomial time.
3. If \(G \) has a cycle with a strong edge, then it is coNP-complete to decide whether \(\text{Consistent}_{Q, \Sigma} \) is true on a given instance.
Example 1

\[Q() :\neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
Example 1

\[Q() : R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \Rightarrow \text{in FO} \]
Example 2

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>
Example 2

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?
Example 2

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() :\neg \text{LC}(x, y), \text{CT}(y, z) \]
Example 2

<table>
<thead>
<tr>
<th>LC(\text{lecturer, course})</th>
<th>CT(\text{course, ta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() :− \text{LC}(x, y), \text{CT}(y, z) \]

Diagram:

\[
\begin{array}{c}
\text{LC}(x, y) \\
\rightarrow \\
\text{CT}(y, z)
\end{array}
\]
Example 2

\[
\begin{align*}
\text{LC(lecturer, course)} & \quad \text{CT(course, ta)} \\
\text{lecture} \rightarrow \text{course} & \quad \text{course} \rightarrow \text{ta}
\end{align*}
\]

Query: Does any course have both a lecturer and a TA?

\[
Q() :- \text{LC}(x, y), \text{CT}(y, z)
\]

\[
\begin{array}{c}
\text{LC}(x, y) \\
\Rightarrow \text{in FO}
\end{array}
\]

\[
\text{CT}(y, z)
\]
Example 3

<table>
<thead>
<tr>
<th>Lecture Relation</th>
<th>Teacher Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC(lecturer, course)</td>
<td>TC(ta, course)</td>
</tr>
<tr>
<td>lecturer → course</td>
<td>ta → course</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?
Example 3

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>TC(ta, course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer (\rightarrow) course</td>
<td>ta (\rightarrow) course</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() : \neg \text{LC}(x, y), \text{TC}(x', y) \]
Example 3

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>TC(ta, course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>ta → course</td>
</tr>
</tbody>
</table>

Query: Does any course have both a lecturer and a TA?

\[Q() :\neg\LC(x, y), \TC(x', y) \]
Example 3

\[
\begin{align*}
\text{LC}(\text{lecturer}, \text{course}) & \quad \text{TC}(\text{ta}, \text{course}) \\
\text{lecturer} \rightarrow \text{course} & \quad \text{ta} \rightarrow \text{course}
\end{align*}
\]

Query: Does any course have both a lecturer and a TA?

\[
Q() :\neg \text{LC}(x, y), \text{TC}(x', y)
\]

\[
\text{LC}(x, y) \leftrightarrow \text{TC}(x', y)
\]

\[
\Rightarrow \text{coNP}-\text{complete}
\]
Example 4

\[\text{LC(lecturer, course)} \quad | \quad \text{CT(course, ta)} \]

\begin{align*}
\text{lecturer} & \rightarrow \text{course} \\
\text{course} & \rightarrow \text{ta}
\end{align*}

Query: Does any course have the same lecturer and TA?
Example 4

<table>
<thead>
<tr>
<th>LC(lecturer, course)</th>
<th>CT(course, ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer → course</td>
<td>course → ta</td>
</tr>
</tbody>
</table>

Query: Does any course have the same lecturer and TA?

\[Q() :\neg \text{LC}(x, y), \text{CT}(y, x) \]
Example 4

\[
\begin{array}{c|c}
\text{LC(lecturer, course)} & \text{CT(course, ta)} \\
\text{lecturer } \rightarrow \text{ course} & \text{course } \rightarrow \text{ ta}
\end{array}
\]

Query: Does any course have the same lecturer and TA?

\[Q() : \neg \text{LC}(x, y), \text{CT}(y, x)\]

\[\Rightarrow \text{not in FO, but in polynomial time}\]
The proof of the non-FO polynomial time is the most involved in the proof of the trichotomy.
Proof of Polynomial Time

- The proof of the non-FO polynomial time is the most involved in the proof of the trichotomy.
- We will see the proof of Kolaitis and Pema [KP12] for the CQ
 \[Q() :- \text{LC}(x,y), \text{CT}(y,x) \]
Conflict-Join Graph

- $Q() :\neg \text{LC}(x, y), \text{CT}(y, x)$
- For an instance I, the *conflict-join* graph of I, denoted $G_{Q,I}$, is the undirected graph with the following properties:
Conflict-Join Graph

- \(Q() : \neg \text{LC}(x,y), \text{CT}(y,x) \)
- For an instance \(I \), the conflict-join graph of \(I \), denoted \(G_{Q,I} \), is the undirected graph with the following properties:
 - The nodes are all the facts \(\text{LC}(a,b) \) and \(\text{CT}(c,d) \) of \(I \)
Conflict-Join Graph

- $Q() :- \text{LC}(x,y), \text{CT}(y,x)$
- For an instance I, the conflict-join graph of I, denoted $G_{Q,I}$, is the undirected graph with the following properties:
 - The nodes are all the facts $\text{LC}(a,b)$ and $\text{CT}(c,d)$ of I
 - There is an edge between:
Conflicts-Join Graph

- $Q() \leftarrow \text{LC}(x, y), \text{CT}(y, x)$

- For an instance I, the conflict-join graph of I, denoted $G_{Q,I}$, is the undirected graph with the following properties:
 - The nodes are all the facts $\text{LC}(a, b)$ and $\text{CT}(c, d)$ of I
 - There is an edge between:
 - every two conflicting facts $\text{LC}(a, b)$ and $\text{LC}(a, b')$
\[Q() :\neg \text{LC}(x, y), \text{CT}(y, x) \]

- For an instance \(I \), the \textit{conflict-join} graph of \(I \), denoted \(G_{Q,I} \), is the undirected graph with the following properties:
 - The nodes are all the facts \(\text{LC}(a, b) \) and \(\text{CT}(c, d) \) of \(I \)
 - There is an edge between:
 - every two conflicting facts \(\text{LC}(a, b) \) and \(\text{LC}(a, b') \)
 - every two conflicting facts \(\text{CT}(c, d) \) and \(\text{CT}(c, d') \)
Conflict-Join Graph

- $Q() := \text{LC}(x, y), \text{CT}(y, x)$
- For an instance I, the conflict-join graph of I, denoted $G_{Q,I}$, is the undirected graph with the following properties:
 - The nodes are all the facts $\text{LC}(a, b)$ and $\text{CT}(c, d)$ of I
 - There is an edge between:
 - every two conflicting facts $\text{LC}(a, b)$ and $\text{LC}(a, b')$
 - every two conflicting facts $\text{CT}(c, d)$ and $\text{CT}(c, d')$
 - every two joinable facts $\text{LC}(a, b)$ and $\text{CT}(b, a)$
Example of a Conflict-Join Graph $G_{Q,I}$

- CT(PL, Keren) ---- CT(PL, Eran)
- LC(Keren, PL) ---- LC(Eran, PL)
- LC(Keren, AI) ---- LC(Eran, AI)
- LC(Keren, DB) ---- LC(Eran, DB)
- CT(DB, Keren) ---- CT(AI, Eran)
Lemma [KP12]

Consider the CQ $Q() :\neg \text{LC}(x, y), \text{CT}(y, x)$ and an inconsistent instance I. Let n be the number of keys (in the two relations) in I. The following are equivalent:

- There exists a repair J of I with $Q(J) = \text{false}$
- $\mathcal{G}_{Q,I}$ has an independent set of size n
Example of an Independent Set of $G_{Q,I}$
Problem?

- Determining whether a graph has an independent set of a given size is **NP-complete**!
 - *So how does the lemma help us?*
Problem?

- Determining whether a graph has an independent set of a given size is **NP-complete**!
 - *So how does the lemma help us?*
- But for some types of graphs, this problem is known to be solvable in polynomial time; for example:
 - Chordal graphs
 - Perfect graphs
 - Graphs with a bounded treewidth
 - **Claw-free** graphs (Minty [Min80])
Determining whether a graph has an independent set of a given size is **NP-complete**!

- *So how does the lemma help us?*

But for some types of graphs, this problem is known to be solvable in polynomial time; for example:

- Chordal graphs
- Perfect graphs
- Graphs with a bounded treewidth
- **Claw-free** graphs (Minty [Min80])

- A **claw** is the complete bipartite graph $K_{1,3}$
Problem?

- Determining whether a graph has an independent set of a given size is **NP-complete**!
 - *So how does the lemma help us?*
- But for some types of graphs, this problem is known to be solvable in polynomial time; for example:
 - Chordal graphs
 - Perfect graphs
 - Graphs with a bounded treewidth
 - **Claw-free** graphs (Minty [Min80])

- A **claw** is the complete bipartite graph $K_{1,3}$
- A graph g is **claw free** if no **induced** subgraph of g is a claw
Can You Find an Induced Claw?

CT(PL, Keren) ——— CT(PL, Eran)

| CT(PL, Keren) ——— CT(PL, Eran) |
|-------------------------|-------------------------|
| LC(Keren, PL) ——— LC(Eran, PL) |
| LC(Keren, AI) ——— LC(Eran, AI) |
| LC(Keren, DB) ——— LC(Eran, DB) |
| CT(DB, Keren) ——— CT(AI, Eran) |
Completing the Proof

- Lemma: $G_{Q,I}$ is claw free.
Completing the Proof

- Lemma: \(G_{Q,I} \) is claw free.
- Corollary: for \(Q() :\neg LC(x,y), CT(y,x) \) the consistency problem can be solved in polynomial time.
To extend the trichotomy to non-Boolean CQs, we need some notation.
To extend the trichotomy to non-Boolean CQs, we need some notation.

If x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x\rightarrow a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i.
To extend the trichotomy to non-Boolean CQs, we need some notation.

- If \(x \) is a sequence of variables and \(a \) is a sequence of constants of the same length as \(x \), then \(Q[x\rightarrow a] \) is the CQ that is obtained from \(Q \) by replacing each variable \(x_i \) with \(a_i \).
 - If \(x_i \) is a head variable, then we remove \(x_i \) from the head.
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x:=a]$ for some tuple a of constants, and let G be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent}_{\Sigma} Q$ is equivalent to some $\varphi(x)$ in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}_{\Sigma} Q$ can be evaluated in polynomial time.
3. If G has a cycle with a strong edge, then non-emptiness of $\text{Consistent}_{\Sigma} Q$ is coNP-complete.
Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x \rightarrow a]$ for some tuple a of constants, and let be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent}_{Q}\Sigma$ is equivalent to some $\varphi(x)$ in FO.
Generalized Trichotomy (non-Boolean case)

Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x\rightarrow a]$ for some tuple a of constants, and let G be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent}_{\Sigma}^Q$ is equivalent to some \(\varphi(x) \) in FO.

2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}_{\Sigma}^Q$ can be evaluated in polynomial time.
Generalized Trichotomy (non-Boolean case)

Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x \rightarrow a]$ for some tuple a of constants, and let be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent}_{\Sigma}^Q$ is equivalent to some $\varphi(x)$ in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}_{\Sigma}^Q$ can be evaluated in polynomial time.
3. If G has a cycle with a strong edge, then non-emptiness of $\text{Consistent}_{\Sigma}^Q$ is coNP-complete.
Example

\[Q(y) :- R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
\[\downarrow \]
\[Q'(\cdot) :- R(x, a, c), S(x, z, w), T(z, c, u), U(b, z) \]

Diagram:

- \(R(x, a, c) \)
- \(U(b, z) \)
- \(T(z, c, u) \)
- \(S(x, z, w) \)
Example

\[
Q(y) \leftarrow R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)
\]

\[
\Downarrow
\]

\[
Q'(\cdot) \leftarrow R(x, a, c), S(x, z, w), T(z, c, u), U(b, z)
\]

\[
\Rightarrow \text{ in FO}
\]
<table>
<thead>
<tr>
<th></th>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Trichotomy Theorem</td>
</tr>
<tr>
<td>3</td>
<td>Attacks</td>
</tr>
<tr>
<td>4</td>
<td>Refined Trichotomy</td>
</tr>
<tr>
<td>5</td>
<td>FO Rewriting with SQL</td>
</tr>
</tbody>
</table>
Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
Problem Definition

- Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
- Given: a CQ Q over R such that
 - Q has no self joins (i.e., no relation name occurs more than once)
 - The attack graph of Q is acyclic
Problem Definition

- Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
- Given: a CQ Q over \mathcal{R} such that
 - Q has no self joins (i.e., no relation name occurs more than once)
 - The attack graph of Q is acyclic
- Goal: Compute an SQL query Q_{cqa} over \mathcal{R}, such that for every inconsistent instance I we have:

$$\text{Consistent}^Q_{\Sigma}(I) = Q_{cqa}(I)$$
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$.
- If $\alpha \in \text{Atoms}(Q)$, then $Q^{\neg \alpha}$ is the CQ obtained from Q by removing α.
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is KVar(α) and y is Var(α) \ KVar(α)
- If $\alpha \in \text{Atoms}(Q)$, then $Q^{-\alpha}$ is the CQ obtained from Q by removing α
- Recall: if x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x \to a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$.
- If $\alpha \in \text{Atoms}(Q)$, then $Q^{-\alpha}$ is the CQ obtained from Q by removing α.
- Recall: if x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x \rightarrow a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i.
 - It may be the case that Q does not contain some of the x_i.
Lemma [KW15]

Let $S = (R, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

1. Q is consistent (i.e., true on every repair of) over I.
2. For some $\alpha(a, b) \in I$, the CQ $Q[x \rightarrow a]$ is consistent over I.
3. There is a fact $f = \alpha(a, b) \in I$ such that: for all facts g of R with the key of f there is c such that: (1) $g = \alpha(a, c)$, and (2) $Q - \alpha[(x, y) \rightarrow (a, c)]$ is consistent over I.
Lemma [KW15]

Let $S = (R, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

- Q is consistent (i.e., true on every repair of) over I.

Key Lemma

Lemma [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

- Q is consistent (i.e., true on every repair of) over I.
- For some $\alpha(a, b) \in I$, the CQ $Q[x \rightarrow a]$ is consistent over I.
Key Lemma

Lemma [KW15]

Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

- Q is consistent (i.e., true on every repair of) over I.
- For some $\alpha(a, b) \in I$, the CQ $Q_{[x \rightarrow a]}$ is consistent over I.
- There is a fact $f = \alpha(a, b) \in I$ such that: for all facts g of R_α with the key of f there is c such that: (1) $g = \alpha(a, c)$, and (2) $Q_{[(x, y) \rightarrow (a, c)]}$ is consistent over I.

Another Lemma

Lemma [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins and with an acyclic attack graph. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. For every $\alpha(a, c) \in I$, the CQ $Q - \alpha((x, y) \rightarrow (a, c))$ has an acyclic attack graph.
Lemma [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins and with an acyclic attack graph. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. For every $\alpha(a, c) \in I$, the CQ $Q_{\alpha}^{-\alpha}[\langle x, y \rangle \rightarrow \langle a, c \rangle]$ has an acyclic attack graph.
We denote Q as the following SQL query:

```
SELECT X FROM R WHERE AC AND TC
```

Where:
- R is a sequence R_1, \ldots, R_m of relation names
- X is a sequence of variables of the form $R_i.A$
 - A is an attribute of R
- AC is a conjunction of conditions of the form $R_i.A = R_j.B$
- TC is a conjunction of conditions of the form $R_i.A = t$ where t is some term (initially a constant)
For a counter l, we denote by

- R^l the sequence obtained from R by replacing each R_i with "$R_i \ R_i^l$" (i.e., naming R_i by R_i^l)
- X^l the sequence obtained from X by replacing each $R_i.A$ with $R_i^l.A$
- AC^l the conjunction obtained from AC by replacing each $R_i.A = R_j.B$ with $R_i^l.A = R_j^l.B$
- TC^l the conjunction obtained from TC by replacing each $R_i.A = t$ with $R_i^l.A = t$
More Notation

- If R' is a subsequence of R, then we denote by
 - $AC \cap R'$ the restriction of AC to those $R_i.A = R_j.B$ where $R_i \in R'$ and $R_j \in R'$
 - $TC \cap R'$ the restriction of AC to those $R_i.A = t$ where $R_i \in R'$
Selecting a Non-Attacked Atom

- Let α be a non-attacked atom (i.e., α has no incoming edges in the attack graph), and let $R = R_\alpha$
Selecting a Non-Attacked Atom

- Let α be a non-attacked atom (i.e., α has no incoming edges in the attack graph), and let $R = R_{\alpha}$
- Denote by:
 - $K = R.A_1, \ldots, R.A_k$ the key attributes of R
 - $V = R.B_1, \ldots, R.B_q$ the non-key attributes of R_i
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of X

```sql
SELECT 'true' FROM R WHERE AC AND TC
```
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of \(X \)

\[
\text{SELECT 'true' FROM } R \text{ WHERE } AC \text{ AND } TC
\]

- We create the rewriting \(\text{Rewrite}(R, AC, TC) \):

\[
\text{SELECT 'true' FROM } R R^1 \text{ WHERE NOT EXISTS (}
\text{SELECT 'true' FROM } R R^2 \text{ WHERE } K^2 = K^1 \text{ AND NOT (}
(AC^2 \cap \{ R^2 \} \text{ AND } TC^2 \cap \{ R^2 \}) \text{ AND EXIST}(\text{Rewrite}(R', AC \cap R', TC')) \text{))}
\]
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of X

```sql
SELECT 'true' FROM $R$ WHERE $AC$ AND $TC$
```

- We create the rewriting $\text{Rewrite}(R, AC, TC)$:

```sql
SELECT 'true' FROM $R$ $R^1$ WHERE
NOT EXISTS (SELECT 'true' FROM $R$ $R^2$ WHERE $K^2 = K^1$ AND NOT
( ( $AC^2 \cap \{R^2\}$ AND $TC^2 \cap \{R^2\}$ ) AND
EXISTS($\text{Rewrite}(R', AC \cap R', TC')$ ) )
)
```

- R' is obtained from R by removing R
- TC' is obtained from $TC \cap R'$ by adding $R_k.A = R^2.B$ for every condition in AC of the form $R_k.A = R.B$ or $R.B = R_k.A$ where $R_k \neq R$
Example 1

\[\text{LC}(Ax, Ay) ; \text{CT}(Ay, Az) \]

\[Q() : - \text{LC}(x, y), \text{CT}(y, z) \]

\[\text{SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay} \]

\[\text{AC} \]
Example 1

```
SELECT 'true' FROM LC, CT WHERE LC.Ay = CT.Ay

SELECT 'true' FROM LC LC1 WHERE NOT EXISTS ( SELECT 'true' FROM LC LC2 WHERE LC2.Ax = LC1.Ax AND NOT EXISTS ( SELECT 'true' FROM CT CT1 WHERE NOT EXISTS ( SELECT 'true' FROM CT CT2 WHERE CT2.Ay = CT1.Ay AND NOT ( CT2.Ay = LC2.Ay ) ) ) )
```
Example 1

SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay

SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT EXISTS(SELECT 'true' FROM CT WHERE CT.Ay = LC2.Ay)
Example 2

\[(\text{LC}(Ax, Ay) ; \text{CT}(Ay, Az)) \quad Q() \equiv \text{LC}(x, y), \text{CT}(y, Avi)\]

\[
\begin{array}{c}
\text{LC}(x, y) \\
\text{CT}(y, Avi)
\end{array}
\]

\[
\text{SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay AND CT.Az='Avi'}
\]

\[
\begin{array}{c}
\text{AC} \\
\text{TC}
\end{array}
\]
Example 2

SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay AND CT.Az='Avi'

<table>
<thead>
<tr>
<th>AC</th>
<th>TC</th>
</tr>
</thead>
</table>

SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (
SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT
(EXISTS(
 SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (
 SELECT 'true' FROM CT CT2 WHERE
 CT2.Ay=CT1.Ay AND NOT
 (CT2.Ay = LC2.Ay AND CT2.Az = 'Avi')
)
))
)
Non-Boolean Case

\[
\text{SELECT } X \text{ FROM } R \text{ WHERE } AC \text{ AND } TC
\]

\[
\Rightarrow \\
\text{SELECT } X_{0} \text{ FROM } R_{0} \text{ WHERE EXISTS (Rewrite (R, AC, TC') \text{))}
\]

TC' is obtained from TC by adding \(R_i.A = R_{0}i.A\) for every \(R_i.A\) in X.
Non-Boolean Case

```
SELECT X FROM R WHERE AC AND TC

⇓

SELECT X^0 FROM R^0 WHERE EXISTS (Rewrite(R, AC, TC'))
```

TC' is obtained from TC by adding $R_i.A = R_i^0.A$ for every $R_i.A$ in X
Example 3

$$\text{LC}(Ax, Ay); \text{CT}(Ay, Az) \quad Q(z) \leftarrow \text{LC}(x, y), \text{CT}(y, z)$$

$${\text{SELECT CT.Az FROM LC, CT WHERE LC.Ay=CT.Ay}}$$
Example 3

\[
\text{SELECT CT.Az FROM LC, CT WHERE LC.Ay=CT.Ay}
\]

\[
\text{SELECT CT0.Az FROM LC LC0, CT CT0 WHERE EXISTS(}
\]
\[
\text{SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (}
\]
\[
\text{SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT}
\]
\[
\text{EXISTS(}
\]
\[
\text{SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (}
\]
\[
\text{SELECT 'true' FROM CT CT2 WHERE}
\]
\[
\text{CT2.Ay=CT1.Ay AND NOT (CT2.Ay = LC2.Ay AND CT2.Az = CT0.Az)}
\]
\[
\text{))})
\]

End of lecture 8

Consistent Query Answering