Principles of Managing Uncertain Data

Lecture 8: Consistent Query Answering
Many thanks to *Jef Wijsen* for helping to create these slides!
Table of Contents

1 Introduction

2 Trichotomy Theorem

3 Attacks

4 Refined Trichotomy

5 FO Rewriting with SQL
Previous Lecture

- Defined *inconsistent databases* and *repairs*
- Defined *Consistent Query Answering* (CQA)
- Saw a schema with primary-key constraints and a CQ where:
 - CQA can be translated into a formula in *First Order Logic* (FO) over the inconsistent instance
 - Hence, computable in polynomial time
 - CQA is *coNP-hard*
 - CQA cannot be phrased in FO over the inconsistent instance, but is still computable in polynomial time
We will focus on schemas with primary-key constraints, and CQs without self joins

- That is, CQs where each relation occurs at most once

We will learn a recent result that shows how to distinguish between the three cases

Such a result is called a trichotomy, since it classifies all cases into three pairwise-disjoint categories

We will see how to rewrite CQA into SQL in the case of FO rewritability
In this lecture we consider only schemas $S = (\mathcal{R}, \Sigma)$ such that Σ consists of primary keys.

That is:
- For every relation name $R \in \mathcal{R}$ there is a unique key constraint $R : X \rightarrow Y$ in Σ
- There are no other constraints in Σ

Note: “no key” is the same as “left-hand side contains all attributes”

In our examples we underline the key attributes.
- For instance, if \mathcal{R} contains $R(A, B, C, D)$ then $R(x, y, z, w)$ means that Σ contains the key constraint $R : AB \rightarrow CD$
CQs without Self Joins

- Recall: a CQ over a signature \mathcal{R} is a query of the form:

$$Q(x) :\neg \exists y [\varphi_1(x, y) \land \cdots \land \varphi_k(x, y)]$$

where each $\varphi_k(x, y)$ is an atomic query

- Each φ_i is called an atom of Q

- We say that Q has no self joins if no two distinct atoms use the same relation name

- We say that Q is Boolean if x is empty; in that case, Q is either true or false on a given instance I
Definition (Consistent Answers)

Let $S = (R, \Sigma)$ be a schema, Q a query over S, and I an inconsistent instance over S. A tuple a is a consistent answer if $a \in Q(J)$ for every repair J. We denote by $\text{Consistent}^Q_\Sigma(I)$ the set of all consistent answers. Hence, we have:

$$\text{Consistent}^Q_\Sigma(I) = \bigcap_{J \in \text{Repairs}_\Sigma(I)} Q(J)$$
Recalling Data Complexity

- Recall: in *data complexity* we fix the schema and query, and only the instance I is considered input.
- Effectively, every schema S and query Q define a separate computational problem $P_{S,Q}$.
Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a CQ without self joins. Assume that $P \neq \text{NP}$. Then exactly one of the following is true.

1. Consistent$^Q_\Sigma$ can be formulated as a query in FO (hence, computable in polynomial time).
2. Consistent$^Q_\Sigma$ cannot be formulated as a query in FO, but is still computable in polynomial time.
3. Testing whether Consistent$^Q_\Sigma$ is empty is NP-complete.

Moreover, we can compute in polynomial time (in S and Q) in which case we are.
Historical Notes I

- **2005**: Fuxman and Miller [FM05] claim a dichotomy for a class of conjunctive queries without self joins
 - A flaw in their proof and result discovered by Wijsen [Wij10b]
- **2010**: Wijsen [Wij10a] establishes a dichotomy in FO rewritability for *acyclic CQs without self joins*
- **2012**: Kolaitis and Pema [KP12] prove a dichotomy (P vs coNP-complete) for *CQs with two atoms and no self joins*
Historical Notes II

- **2013**: Fontaine [Fon13] establishes an explanation on why it is difficult to establish dichotomies for (U)CQs **with** self joins
 - Basically, it entails solving a long standing open problem
- **2014**: Koutris and Suciu [KS14] prove a dichotomy for **CQs without self joins, where every relation is binary (with a key)**
- **2015**: Koutris and Wijsen [KW15] prove a trichotomy for **all CQs without self joins**
 - That is, the trichotomy we learn here
Table of Contents

1. Introduction
2. Trichotomy Theorem
3. Attacks
4. Refined Trichotomy
5. FO Rewriting with SQL
Throughout this section, we fix a schema $\mathcal{S} = (\mathcal{R}, \Sigma)$ and a CQ Q

- Σ consists of primary keys (one for each relation)
- Q has no self joins

Recall that for such Σ, a repair is a maximal consistent subset of I

We first assume that Q is Boolean (that is, there are no variables in the head)

Hence, the goal is to determine whether Q is true in every repair
Notation

- We denote by:
 - $\text{Atoms}(Q)$ the set of atoms of Q
 - $\text{Var}(Q)$ the set of all the variables of Q
 - α_R the atom of Q over the relation name R
 - R_α the relation name of the atom α

- For $\alpha \in \text{Atoms}(Q)$, we denote by:
 - $\text{Var}(\alpha)$ the variables that occur in α
 - $\text{KVar}(\alpha)$ the variables that occur in key attributes of R_α
Example

\[Q() \vdash R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{Atoms}(Q) = \{ R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \} \)
- \(\text{Var}(Q) = \{ x, y, z, w, u \} \)
- \(\alpha_S = S(x, z, w) \)
- \(\alpha = \alpha_R = R(x, a, y) \Rightarrow R_\alpha = R, \text{Var}(\alpha) = \{ x, y \}, \text{KVar}(\alpha) = \{ x \} \)
- \(\alpha = S(x, z, w) \Rightarrow R_\alpha = S, \text{Var}(\alpha) = \{ x, z, w \}, \text{KVar}(\alpha) = \{ x \} \)
- We denote constants by non-italic letters from the beginning of the alphabet (e.g., a and b), as opposed to variables (e.g., \(x \) and \(y \))
We define the following set of functional dependencies (FDs):

\[\text{FD}(Q) \overset{\text{def}}{=} \{ \text{KVar}(\alpha) \to \text{Var}(\alpha) \mid \alpha \in \text{Atoms}(Q) \} \]

- \(\text{FD}^+(Q) \) denotes the set of all FDs over \(\text{Var}(Q) \) that are logically implied from \(\text{FD}(Q) \)
- Equivalently (by Armstrong’s axioms), \(\text{FD}^+(Q) \) is obtained from \(\text{FD}(Q) \) by repeatedly applying the following rules:
 - \(X \to X' \) whenever \(X' \subseteq X \) (reflexivity)
 - If \(X \to Y \) and \(Y \to Z \), then \(X \to Z \) (transitivity)
 - If \(X \to Y \), then \(X \cup Z \to Y \cup Z \) (augmentation)
Example

\[Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(\text{FD}(Q) = \{ x \rightarrow y, x \rightarrow zw, zy \rightarrow u, \emptyset \rightarrow z \} \)
- \(\text{FD}^+(Q) = \{ x \rightarrow yzwu, y \rightarrow zu, u \rightarrow u, \ldots \} \cup \text{FD}(Q) \)
External Dependency

▫ For \(\alpha \in \text{Atoms}(Q) \) and \(x \in \text{Var}(Q) \), we say that \(x \) is an **external dependent** of \(\alpha \) if \(x \) is determined from the key of \(\alpha \) even without \(\alpha \); that is:

\[
(K\text{Var}(\alpha) \rightarrow x) \in \text{FD}^+(Q \setminus \{\alpha\})
\]

▫ Observe that every \(x \in K\text{Var}(\alpha) \) is an external dependent of \(\alpha \)

▫ Example: \(Q() := R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \)
 ▪ *Which variables are external dependents of \(\alpha_R \)?* \(x, z, w \)
 ▪ *Which variables are external dependents of \(\alpha_S \)?* \(x, y, z, u \)

▫ If \(x \) is **not** an external dependent of \(\alpha \), then we say that \(x \) is **externally independent** of \(\alpha \)
Let α and γ be two distinct atoms of Q

We say that α attacks γ if there is a sequence β_1, \ldots, β_n of atoms such that:

- $\alpha = \beta_1$ and $\beta_n = \gamma$
- Every $\text{Var}(\beta_i) \cap \text{Var}(\beta_{i+1})$ contains at least one variable that is externally independent of α
If β and γ are atoms, then we denote by $\beta \overset{x}{\sim}_R \gamma$ the fact that x is a variable in $\text{Var}(\beta) \cap \text{Var}(\gamma)$ that is externally independent of α_R.

Hence, α attacks γ if and only if there exists a sequence

$$
\beta_1 \overset{x_1}{\sim}_R \beta_2 \overset{x_2}{\sim}_R \cdots \overset{x_{n-1}}{\sim}_R \beta_n
$$

where $\beta_1 = \alpha$, $R = R_\alpha$, and $\beta_n = \gamma$.

Notation

- Introduction
- Trichotomy Theorem
- Attacks
- Refined Trichotomy
- FO Rewriting with SQL
- References
Examples

\[Q() \triangleright R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]

- \(R(x, a, y) \) attacks \(T(z, y, u) \):
 \[R(x, a, y) \overset{y}{\sim}_{R} T(z, y, u) \]

- \(U(b, z) \) attacks all other atoms:
 \[U(b, z) \overset{z}{\sim}_{U} S(x, z, w) \overset{x}{\sim}_{U} R(x, a, y) \overset{y}{\sim}_{U} T(z, y, u) \]
Weak and Strong Attack

- If α attacks γ then we say that:
 - α weakly attacks γ if $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$
 - α strongly attacks γ otherwise

- Example: $Q() :- R(x, a, y), S(x, z, w), T(z, y, u), U(b, z)$
 - $R(x, a, y)$ weakly attacks $T(z, y, u)$
 - $U(b, z)$ strongly attacks all other atoms
The attack graph of Q is the directed graph $G = (V, E)$ where:

- V is $\text{Atoms}(Q)$
- There is an edge (α, γ) whenever α attacks γ

An edge (α, γ) is:

- weak if α weakly attacks γ (i.e., $\text{FD}(Q)$ implies $\text{KVar}(\alpha) \rightarrow \text{KVar}(\gamma)$)
- strong if α strongly attacks γ
Example

\[Q() \vdash R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
Table of Contents

1 Introduction

2 Trichotomy Theorem

3 Attacks

4 Refined Trichotomy

5 FO Rewriting with SQL
Theorem [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and let G be the attack graph of Q.

1. G is acyclic if and only if $\text{Consistent}^{Q}_\Sigma$ is expressible in FO.
2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}^{Q}_\Sigma$ can be computed in polynomial time.
3. If G has a cycle with a strong edge, then it is coNP-complete to decide whether $\text{Consistent}^{Q}_\Sigma$ is true on a given instance.
Example 1

\[Q() : \neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \Rightarrow \text{in FO} \]
Example 2

\begin{align*}
\text{LC}(\text{lecturer, course}) & \quad \text{CT}(\text{course, ta}) \\
\text{lecturer} \rightarrow \text{course} & \quad \text{course} \rightarrow \text{ta}
\end{align*}

Query: Does any course have both a lecturer and a TA?

\[Q() :\neg \text{LC}(x, y), \text{CT}(y, z) \]

\[\text{LC}(x, y) \rightarrow \text{CT}(y, z) \]

\[\Rightarrow \text{in FO} \]
Example 3

\[
\begin{align*}
\text{LC(lecturer, course)} & \quad \text{TC(ta, course)} \\
\text{lecturer } \rightarrow \text{ course} & \quad \text{ta } \rightarrow \text{ course}
\end{align*}
\]

Query: Does any course have both a lecturer and a TA?

\[Q() : - \text{LC}(x, y), \text{TC}(x', y)\]

\[\Rightarrow \text{coNP-complete}\]
Example 4

Let $LC(\text{lecturer}, \text{course})$ and $CT(\text{course}, \text{ta})$:

$\text{lecturer} \rightarrow \text{course}$

$\text{course} \rightarrow \text{ta}$

Query: Does any course have the same lecturer and TA?

$Q() :\neg LC(x, y), CT(y, x)$

⇒ not in FO, but in polynomial time
The proof of the non-FO polynomial time is the most involved in the proof of the trichotomy.

We will see the proof of Kolaitis and Pema [KP12] for the CQ

\[Q() \leftarrow \text{LC}(x, y), \text{CT}(y, x) \]
Conflict-Join Graph

- \(Q() : \neg \text{LC}(x, y), \text{CT}(y, x) \)
- For an instance \(I \), the \textit{conflict-join} graph of \(I \), denoted \(G_{Q,I} \), is the undirected graph with the following properties:
 - The nodes are all the facts \(\text{LC}(a, b) \) and \(\text{CT}(c, d) \) of \(I \).
 - There is an edge between:
 - every two conflicting facts \(\text{LC}(a, b) \) and \(\text{LC}(a, b') \)
 - every two conflicting facts \(\text{CT}(c, d) \) and \(\text{CT}(c, d') \)
 - every two joinable facts \(\text{LC}(a, b) \) and \(\text{CT}(b, a) \)
Example of a Conflict-Join Graph $G_{Q,I}$

- CT(PL, Keren) → LC(Keren, PL) → LC(Keren, AI) → CT(DB, Keren)
- CT(PL, Eran) → LC(Eran, PL) → LC(Eran, AI) → CT(AI, Eran)
- LC(Keren, PL) → LC(Keren, DB)
- LC(Eran, PL) → LC(Eran, DB)
Lemma [KP12]

Consider the CQ $Q() :\neg \text{LC}(x,y), \text{CT}(y,x)$ and an inconsistent instance I. Let n be the number of keys (in the two relations) in I. The following are equivalent:

- There exists a repair J of I with $Q(J) = \text{false}$
- $G_{Q,I}$ has an independent set of size n
Example of an Independent Set of $G_{Q,I}$

CT(PL, Keren) → LC(Keren, PL) → LC(Keren, AI) → LC(Keren, DB) → CT(DB, Keren)

CT(PL, Eran) → LC(Eran, PL) → LC(Eran, DB) → CT(AI, Eran)
Problem?

- Determining whether a graph has an independent set of a given size is NP-complete!
 - So how does the lemma help us?
- But for some types of graphs, this problem is known to be solvable in polynomial time; for example:
 - Chordal graphs
 - Perfect graphs
 - Graphs with a bounded treewidth
 - Claw-free graphs (Minty [Min80])

- A claw is the complete bipartite graph $K_{1,3}$
- A graph g is claw free if no induced subgraph of g is a claw
Can You Find an Induced Claw?

CT(PL, Keren) CT(PL, Eran)

LC(Keren, PL) LC(Eran, PL)

LC(Keren, AI) LC(Eran, AI)

LC(Keren, DB) LC(Eran, DB)

CT(DB, Keren) CT(AI, Eran)
Completing the Proof

- Lemma: $G_{Q,I}$ is claw free.
- Corollary: for $Q() :− \text{LC}(x, y), \text{CT}(y, x)$ the consistency problem can be solved in polynomial time
To extend the trichotomy to non-Boolean CQs, we need some notation.

If \(x \) is a sequence of variables and \(a \) is a sequence of constants of the same length as \(x \), then \(Q[x \mapsto a] \) is the CQ that is obtained from \(Q \) by replacing each variable \(x_i \) with \(a_i \).

- If \(x_i \) is a head variable, then we remove \(x_i \) from the head.
Theorem [KW15]

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of primary keys. Let $Q(x)$ be a CQ without self joins (where x is the sequence of head variables). Let Q_b be the Boolean CQ $Q[x \rightarrow a]$ for some tuple a of constants, and let be the attack graph of Q_b.

1. G is acyclic if and only if $\text{Consistent}_{\Sigma}^Q$ is equivalent to some $\varphi(x)$ in FO.

2. If G has cycles, but no cycle contains a strong edge, then $\text{Consistent}_{\Sigma}^Q$ can be evaluated in polynomial time.

3. If G has a cycle with a strong edge, then non-emptiness of $\text{Consistent}_{\Sigma}^Q$ is coNP-complete.
Example

\[Q(y) : \neg R(x, a, y), S(x, z, w), T(z, y, u), U(b, z) \]
\[\downarrow \]
\[Q'(\cdot) : R(x, a, c), S(x, z, w), T(z, c, u), U(b, z) \]

\[\Rightarrow \text{in FO} \]
Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
Problem Definition

- Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name).
- Given: a CQ Q over \mathcal{R} such that
 - Q has no self joins (i.e., no relation name occurs more than once)
 - The attack graph of Q is acyclic
Problem Definition

- Let $S = (\mathcal{R}, \Sigma)$ be a schema, such that Σ consists of primary keys (one per relation name)
- Given: a CQ Q over \mathcal{R} such that
 - Q has no self joins (i.e., no relation name occurs more than once)
 - The attack graph of Q is acyclic
- Goal: Compute an SQL query Q_{cqa} over \mathcal{R}, such that for every inconsistent instance I we have:
 \[\text{Consistent}^Q_{\Sigma}(I) = Q_{\text{cqa}}(I) \]
Notation

- We denote $\alpha \in \text{Atoms}(Q)$ by $\alpha(x, y)$, where x is $\text{KVar}(\alpha)$ and y is $\text{Var}(\alpha) \setminus \text{KVar}(\alpha)$.
- If $\alpha \in \text{Atoms}(Q)$, then $Q^{-\alpha}$ is the CQ obtained from Q by removing α.
- Recall: if x is a sequence of variables and a is a sequence of constants of the same length as x, then $Q[x \rightarrow a]$ is the CQ that is obtained from Q by replacing each variable x_i with a_i.
 - It may be the case that Q does not contain some of the x_i. \\
Key Lemma

Lemma [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins, and I an inconsistent instance. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. The following are equivalent.

- Q is consistent (i.e., true on every repair of) over I.
- For some $\alpha(a, b) \in I$, the CQ $Q_{[x \rightarrow a]}$ is consistent over I.
- There is a fact $f = \alpha(a, b) \in I$ such that: for all facts g of R_α with the key of f there is c such that: (1) $g = \alpha(a, c)$, and (2) $Q_{[(x, y) \rightarrow (a, c)]}$ is consistent over I.
Lemma [KW15]

Let $S = (\mathcal{R}, \Sigma)$ be a schema where Σ consists of primary keys. Let Q be a Boolean CQ without self joins and with an acyclic attack graph. Let $\alpha(x, y)$ be an atom without incoming edges in the attack graph of Q. For every $\alpha(a, c) \in I$, the CQ $Q_{[(x, y) \rightarrow (a, c)]}^\alpha$ has an acyclic attack graph.
We denote \(Q \) as the following SQL query:

\[
\text{SELECT } X \text{ FROM } R \text{ WHERE } AC \text{ AND } TC
\]

Where:
- \(R \) is a sequence \(R_1, \ldots, R_m \) of relation names
- \(X \) is a sequence of variables of the form \(R_i.A \)
 - \(A \) is an attribute of \(R \)
- \(AC \) is a conjunction of conditions of the form \(R_i.A = R_j.B \)
- \(TC \) is a conjunction of conditions of the form \(R_i.A = t \) where \(t \) is some term (initially a constant)
For a counter l, we denote by

- \vec{R}^l the sequence obtained from \vec{R} by replacing each R_i with \("R_i \ R_i^l" \) (i.e., naming R_i by R_i^l)
- \vec{X}^l the sequence obtained from \vec{X} by replacing each $R_i.A$ with $R_i^l.A$
- \vec{AC}^l the conjunction obtained from \vec{AC} by replacing each $R_i.A = R_j.B$ with $R_i^l.A = R_j^l.B$
- \vec{TC}^l the conjunction obtained from \vec{TC} by replacing each $R_i.A = t$ with $R_i^l.A = t$
More Notation

- If \(R' \) is a subsequence of \(R \), then we denote by:
 - \(\text{AC} \cap R' \) the restriction of \(\text{AC} \) to those \(R_i.A = R_j.B \) where \(R_i \in R' \) and \(R_j \in R' \)
 - \(\text{TC} \cap R' \) the restriction of \(\text{AC} \) to those \(R_i.A = t \) where \(R_i \in R' \)
Selecting a Non-Attacked Atom

- Let α be a non-attacked atom (i.e., α has no incoming edges in the attack graph), and let $R = R_\alpha$

- Denote by:
 - $K = R.A_1, \ldots, R.A_k$ the key attributes of R
 - $V = R.B_1, \ldots, R.B_q$ the non-key attributes of R_i
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of X

```sql
SELECT 'true' FROM R WHERE AC AND TC
```
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of X

  ```sql
  SELECT 'true' FROM R WHERE AC AND TC
  ```

- We create the rewriting $\text{Rewrite}(R, AC, TC)$:

  ```sql
  SELECT 'true' FROM \( R \ R^1 \) WHERE
  NOT EXISTS (SELECT 'true' FROM \( R \ R^2 \) WHERE \( K^2 = K^1 \) AND NOT
  ( ( AC^2 \cap \{ R^2 \} AND TC^2 \cap \{ R^2 \} ) \) AND
  EXISTS(\text{Rewrite}(R', AC \cap R', TC') ) )
  ```
Recursive Rewriting

- Begin with Boolean: assuming 'true' instead of X

  ```sql
  SELECT 'true' FROM R WHERE AC AND TC
  ```

- We create the rewriting $\text{Rewrite}(R, AC, TC)$:

  ```sql
  SELECT 'true' FROM R R^1 WHERE
  NOT EXISTS ( 
    SELECT 'true' FROM R R^2 WHERE K^2 = K^1 AND NOT 
    ( ( AC^2 \cap \{R^2\} \land TC^2 \cap \{R^2\} ) \land 
    \text{EXISTS}(\text{Rewrite}(R^', AC \cap R', TC')) ) 
  )
  ```

- R' is obtained from R by removing R
- TC' is obtained from $TC \cap R'$ by adding $R_k.A = R^2.B$ for every condition in AC of the form $R_k.A = R.B$ or $R.B = R_k.A$ where $R_k \neq R$
Example 1

$\text{LC}(Ax, Ay) ; \text{CT}(Ay, Az)$

$Q() \equiv \text{LC}(x, y), \text{CT}(y, z)$

```
SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay
```

AC
Example 1

```sql
SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay
```

```sql
SELECT 'true' FROM LC LC1 WHERE NOT EXISTS ( 
    SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT 
    EXISTS( 
        SELECT 'true' FROM CT CT1 WHERE NOT EXISTS ( 
            SELECT 'true' FROM CT CT2 WHERE CT2.Ay=CT1.Ay AND NOT ( CT2.Ay = LC2.Ay ) 
        ) 
    ) 
) 
```
Example 1

```
SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay

SELECT 'true' FROM LC LC1 WHERE NOT EXISTS ( 
    SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT 
    EXISTS( 
        SELECT 'true' FROM CT WHERE CT.Ay = LC2.Ay 
    )
) 
```
Example 2

\[\text{LC}(Ax, Ay) ; \text{CT}(Ay, Az) \]

\[Q() := \text{LC}(x, y), \text{CT}(y, Avi) \]

\[\begin{array}{c}
\text{SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay AND CT.Az='Avi'}
\end{array} \]
Example 2

\[
\text{SELECT 'true' FROM LC, CT WHERE LC.Ay=CT.Ay AND CT.Az='Avi'}
\]

\[
\text{SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (}
\text{SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT}
\text{EXISTS(}
\text{SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (}
\text{SELECT 'true' FROM CT CT2 WHERE}
\text{CT2.Ay=CT1.Ay AND NOT}
\text{(CT2.Ay = LC2.Ay AND CT2.Az = 'Avi'})}
\text{))})
\]
Non-Boolean Case

SELECT X FROM R WHERE AC AND TC
Non-Boolean Case

$$\text{SELECT } X \text{ FROM } R \text{ WHERE } AC \text{ AND } TC$$

$$\Downarrow$$

$$\text{SELECT } X^0 \text{ FROM } R^0 \text{ WHERE EXISTS (Rewrite} (R, AC, TC'))$$

TC' is obtained from TC by adding $R_i.A = R^0_i.A$ for every $R_i.A$ in X
Example 3

\[\text{LC}(Ax, Ay) \land \text{CT}(Ay, Az) \quad Q(z) : - \text{LC}(x, y), \text{CT}(y, z) \]

\[
\begin{align*}
\text{LC}(x, y) & \quad \text{CT}(y, z) \\
\end{align*}
\]

\[
\text{SELECT CT.Az FROM LC, CT WHERE LC.Ay=CT.Ay}
\]

\[\{\text{AC}\}\]
Example 3

```
SELECT CT.Az FROM LC, CT WHERE LC.Ay=CT.Ay
```

```
SELECT CT0.Az FROM LC LC0, CT CT0 WHERE EXISTS(
  SELECT 'true' FROM LC LC1 WHERE NOT EXISTS (  
    SELECT 'true' FROM LC LC2 WHERE LC2.Ax=LC1.Ax AND NOT  
      EXISTS(       
        SELECT 'true' FROM CT CT1 WHERE NOT EXISTS (  
          SELECT 'true' FROM CT CT2 WHERE  
            CT2.Ay=CT1.Ay AND NOT  
             ( CT2.Ay = LC2.Ay AND CT2.Az = CT0.Az)  
        ) ))
  ))
```

References I

End of lecture 8

Consistent Query Answering