Principles of Managing Uncertain Data

Lecture 4: Computing Joins
Table of Contents

1 Introduction

2 Acyclic Joins

3 Algorithm for Acyclic Joins (Yannakakis)

4 Joins with Hypertree Decompositions
Table of Contents

1 Introduction

2 Acyclic Joins

3 Algorithm for Acyclic Joins (Yannakakis)

4 Joins with Hypertree Decompositions
We have learned the concepts of data complexity and combined complexity.
Previous Lecture

- We have learned the concepts of *data complexity* and *combined complexity*
- We have seen that CQs can be evaluated in polynomial time under *data complexity*
 - And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)
We have learned the concepts of *data complexity* and *combined complexity*.

We have seen that CQs can be evaluated in polynomial time under *data complexity*:
- And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness).

We have seen that, under *combined complexity*:
- Boolean CQ evaluation is NP-complete.
We have learned the concepts of *data complexity* and *combined complexity*

We have seen that CQs can be evaluated in polynomial time under *data complexity*:

- And that the degree of the polynomial “necessarily” depends on the query (W[1]-hardness)

We have seen that, under *combined complexity*:

- Boolean CQ evaluation is NP-complete
- CQs cannot be evaluated in polynomial total time, unless \(P = NP \)
Today we consider only *combined complexity*
Today we consider only \textit{combined complexity}

We have seen an example of a \textit{fragment} of CQs that can be evaluated in polynomial total time

\hspace{1em} Namely, n-length paths
Today we consider only *combined complexity*

- We have seen an example of a *fragment* of CQs that can be evaluated in polynomial total time
 - Namely, n-length paths
- Today we learn more a general fragment of tractable CQs
Today we consider only *combined complexity*

- We have seen an example of a *fragment* of CQs that can be evaluated in polynomial total time
 - Namely, n-length paths
- Today we learn more a general fragment of tractable CQs
 - Acyclic CQs
Today we consider only combined complexity.

We have seen an example of a fragment of CQs that can be evaluated in polynomial total time.

- Namely, \(n \)-length paths.

Today we learn more a general fragment of tractable CQs:

- Acyclic CQs.
- More generally, CQs of a bounded hypertree width.
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) := \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables.
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) \leftarrow \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables

- An atomic formula has the form \(R(\tau_1, \ldots, \tau_k) \) where \(R \) is a \(k \)-ary relation symbol and each \(\tau_i \) is either a variable (in \(x \) or \(y \)) or a constant term
Recalling Conjunctive Queries

- Recall that a Conjunctive Query (CQ) has the form

\[Q(x) := \varphi_1(x, y), \ldots, \varphi_m(x, y) \]

where each \(\varphi_i \) is an atomic formula, \(x \) and \(y \) are disjoint sequences of unique variables.

- An **atomic formula** has the form \(R(\tau_1, \ldots, \tau_k) \) where \(R \) is a \(k \)-ary relation symbol and each \(\tau_i \) is either a variable (in \(x \) or \(y \)) or a constant term.

- \(Q(x) \) is the **head**, \(\varphi_1(x, y), \ldots, \varphi_m(x, y) \) is the **body**, and each \(\varphi_i(x, y) \) is a **body atom**.

- We require every variable in the head to occur at least once in the body.
Result of a CQ

- Let $Q(x) : \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be a CQ and an instance, respectively (over the same signature)
Result of a CQ

- Let \(Q(\mathbf{x}) :- \varphi_1(\mathbf{x}, \mathbf{y}), \ldots, \varphi_m(\mathbf{x}, \mathbf{y}) \) and \(I \) be a CQ and an instance, respectively (over the same signature).

- A **homomorphism** from \(Q \) to \(I \) is a function \(\mu \) that maps every variable of \(Q \) to a constant, such that \(\mu(\varphi_i(\mathbf{x}, \mathbf{y})) \) is a fact of \(I \) for every \(i = 1, \ldots, m \).

 - \(\mu(\varphi_i(\mathbf{x}, \mathbf{y})) \) is the fact that is obtained by replacing every variable \(z \) with the constant \(\mu(z) \).
Result of a CQ

- Let $Q(x) :- \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be a CQ and an instance, respectively (over the same signature)
- A *homomorphism* from Q to I is a function μ that maps every variable of Q to a constant, such that $\mu(\varphi_i(x, y))$ is a fact of I for every $i = 1, \ldots, m$
 - $\mu(\varphi_i(x, y))$ is the fact that is obtained by replacing every variable z with the constant $\mu(z)$
- If μ is a homomorphism from Q to I, then $\mu|_x$ is the restriction of μ to the variables of x
Result of a CQ

- Let $Q(\mathbf{x}) := \varphi_1(\mathbf{x}, \mathbf{y}), \ldots, \varphi_m(\mathbf{x}, \mathbf{y})$ and I be a CQ and an instance, respectively (over the same signature).
- A **homomorphism** from Q to I is a function μ that maps every variable of Q to a constant, such that $\mu(\varphi_i(\mathbf{x}, \mathbf{y}))$ is a fact of I for every $i = 1, \ldots, m$.
 - $\mu(\varphi_i(\mathbf{x}, \mathbf{y}))$ is the fact that is obtained by replacing every variable z with the constant $\mu(z)$.
- If μ is a homomorphism from Q to I, then $\mu|_x$ is the restriction of μ to the variables of \mathbf{x}.
- The **result** of evaluating Q over I, denoted $Q(I)$, is the set,

\[\{ \mu|_x \mid \mu \text{ is a homomorphism from } Q \text{ to } I \} \]
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.

In the first reduction (that we have seen already), we generated a CQ with a *single binary relation*, repeating many times.
To understand the difficulty of joins, we will recall the proof of NP-hardness, and see a new one.

In the first reduction (that we have seen already), we generated a CQ with a single binary relation, repeating many times.

In the second reduction, we generate a CQ with many ternary relation symbols, but none of them appears more than once in Q; in addition, each relation has precisely seven tuples.

A CQ without repeated relation symbols is called non-repeating or self-join free.
Problem Def. (Clique)

Given a graph $G = (V, E)$ and a number k, determine whether G contains a clique of size k, that is, a subset U of V such that $|U| = k$ and every two nodes in U are neighbours.
Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:

- $S = \{R_E/2\}$
- $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
- $Q_k(x_1, \ldots, x_k) := \land_{1 \leq i < j \leq k} R_E(x_i, x_j)$

For example, suppose that G is the following graph:

```
   1   2
  / \ /  \
 3---4
```

$I_G = \begin{array}{c}
R_E \\
1 & 3 \\
2 & 3 \\
2 & 4 \\
3 & 4 \\
\end{array}$

$Q_3 := R_E(X_1, X_2), R_E(X_1, X_3), R(X_2, X_3)$
Problem Def. (3-SAT)

Given a propositional formula $\psi = \phi_1 \land \cdots \land \phi_m$ over the variables x_1, \ldots, x_n, where each ϕ_i is a disjunction of three atomic formulas (each has the form x_i or $\neg x_i$), determine whether ψ is satisfiable.
Given $\psi = \varphi_1 \land \cdots \land \varphi_m$ we construct:

1. A relation symbol R_i for each φ_i
2. An atomic formula $\phi_i = R_i(x, y, z)$ where x, y and z are the variables that appear in φ_i
3. $Q(x_1, \ldots, x_n) :- \phi_1, \ldots, \phi_m$
4. The instance I has in the relation R_i all 7 tuples $(b_1, b_2, b_3) \in \{0, 1\}^3$ that satisfy ϕ_i

That’s it!
Example

\[\psi: (x \lor y \lor z) \land (\neg x \lor y \lor w) \land (x \lor \neg z \lor \neg w) \]
Example

- \(\psi: (x \lor y \lor z) \land (\neg x \lor y \lor w) \land (x \lor \neg z \lor \neg w) \)
- \(Q(x, y, z, w) := R_1(x, y, z), R_2(x, y, w), R_3(x, z, w) \)

\[
\begin{array}{c|c|c}
I & R_1 & R_2 \\
\hline
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.

Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:

\[\alpha(J) \text{ and } Q(I) \text{ are "the same" } \]

That is, there is a straightforward translation between the two.
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.

Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:

- α has the form $\pi_{A_1,\ldots,A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols.
It is sometimes more comfortable to work with RA joins (and projection) instead of CQs.

Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:

- α has the form $\pi_{A_1,\ldots,A_k}(T_1 \bowtie \cdots \bowtie T_m)$ where the T_i are distinct relation symbols.
- $\alpha(J)$ and $Q(I)$ are “the same”
 - That is, there is a straightforward translation between the two.
From CQs to Joins

- It is sometimes more comfortable to work with RA joins (and projection) instead of CQs
- Given a CQ Q and an instance I over a schema S, we can easily construct a schema T, an RA expression α over T and an instance J over T such that:
 - α has the form $\pi_{A_1, \ldots, A_k}(T_1 \Join \cdots \Join T_m)$ where the T_i are distinct relation symbols
 - $\alpha(J)$ and $Q(I)$ are “the same”
 - That is, there is a straightforward translation between the two
- For example, how would you translate the following CQ?

$$Q(x,y) :\neg R(x,y,Avia), R(y,z,x), S(x,x)$$
Let $Q(x) :- \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S.

Translation
Translation

- Let \(Q(x) \) := \(\varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be over \(S \)
- Each *variable* becomes an *attribute*
Translation

- Let $Q(x) :\varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each *variable* becomes an *attribute*
- Each *body atom* φ_i becomes a unique *relation schema* T_i with the attributes (variables) that appear in φ_i (in any order)
Translation

- Let \(Q(x) \vdash \varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be over \(S \)
- Each \textit{variable} becomes an \textit{attribute}
- Each \textit{body atom} \(\varphi_i \) becomes a unique \textit{relation schema} \(T_i \) with the attributes (variables) that appear in \(\varphi_i \) (in any order)
- Each \textit{head variable} becomes a \textit{projection attribute}
Translation

- Let \(Q(x) \leftarrow \varphi_1(x, y), \ldots, \varphi_m(x, y) \) and \(I \) be over \(S \)
- Each variable becomes an attribute
- Each body atom \(\varphi_i \) becomes a unique relation schema \(T_i \) with the attributes (variables) that appear in \(\varphi_i \) (in any order)
- Each head variable becomes a projection attribute
- In \(J \), the relation \(T_i \) is obtained by evaluating \(\varphi_i \) over \(I \) as if \(\varphi_i \) is a CQ with all variables in the head
Translation

- Let $Q(x) :\neg \varphi_1(x, y), \ldots, \varphi_m(x, y)$ and I be over S
- Each variable becomes an attribute
- Each body atom φ_i becomes a unique relation schema T_i with the attributes (variables) that appear in φ_i (in any order)
- Each head variable becomes a projection attribute
- In J, the relation T_i is obtained by evaluating φ_i over I as if φ_i is a CQ with all variables in the head
- Example: $Q(x, y) :\neg R(x, y, \text{Avia}), R(y, z, x), S(x, x)$

$$\Rightarrow \pi_{x,y}(T_1(x, y) \Join T_2(x, y, z) \Join T_3(x))$$
In the remainder of this lecture, a **CQ expression** is an RA expression of the form

$$\pi_A(R_1 \bowtie \cdots \bowtie R_k)$$

- Every R_i is a distinct relation symbol (of any arity),
- A is a sequence of attributes from the A_is
In the remainder of this lecture, a \textit{CQ expression} is an RA expression of the form
\[
\pi_A(R_1 \Join \cdots \Join R_k)
\]

- Every R_i is a distinct relation symbol (of any arity),
- A is a sequence of attributes from the A_is
- If projection π is redundant, it may be omitted
Table of Contents

1. Introduction

2. Acyclic Joins

3. Algorithm for Acyclic Joins (Yannakakis)

4. Joins with Hypertree Decompositions
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges)

If \(\mathcal{H}\) is a hypergraph, then we denote by
- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\)
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by:
- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\).

Let \(\alpha = \pi_A(R_1 \Join \cdots \Join R_k)\) be a CQ expression.
A hypergraph is a pair \((V, H)\), where \(V\) is a finite set of nodes, and \(H\) is a set of subsets of \(V\), called hyperedges (and sometimes just edges).

If \(\mathcal{H}\) is a hypergraph, then we denote by:
- \(\text{nodes}(\mathcal{H})\) the set of nodes of \(\mathcal{H}\),
- \(\text{edges}(\mathcal{H})\) the set of hyperedges of \(\mathcal{H}\).

Let \(\alpha = \pi_A(R_1 \Join \cdots \Join R_k)\) be a CQ expression.

The hypergraph of \(\alpha\), denoted \(\mathcal{H}_\alpha\), has:
- The attributes in \(\alpha\) as the set of nodes
- A hyperedge \(e_i\) for each \(R_i\), containing the attributes of \(R_i\)
Example

$$\pi_{x,y}(R(x, y, z) \bowtie S(x, u) \bowtie T(y, z, w))$$
A **join tree** of a hypergraph \mathcal{H} is a tree T with the following properties:
Join Tree

- A **join tree** of a hypergraph \mathcal{H} is a tree T with the following properties:
 - The nodes of T are the hyperedges of \mathcal{H}
 - In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$
Join Tree

- A *join tree* of a hypergraph \mathcal{H} is a tree T with the following properties:
 - The nodes of T are the hyperedges of \mathcal{H}.
 - In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$.
 - For every $v \in \text{nodes}(\mathcal{H})$, the nodes of T that contain v form a connected subtree of T.

20/52
A **join tree** of a hypergraph \mathcal{H} is a tree T with the following properties:

- The nodes of T are the hyperedges of \mathcal{H}.
- In notation, $\text{nodes}(T) = \text{edges}(\mathcal{H})$.
- For every $v \in \text{nodes}(\mathcal{H})$, the nodes of T that contain v form a connected subtree of T.

Example:

![Join Tree Diagram](image-url)
Ear Removal

- An *ear* of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).
Ear Removal

- An *ear* of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).
- An *ear removal* on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}.

An ear of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).

An ear removal on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}.

Example:

```
  y  z  x  u  w
  y  z  x  u  w
  y  z  x  u  w
  y  z  x  u  w
```

21/52
Ear Removal

- An **ear** of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).
- An **ear removal** on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}.
 - $\text{nodes}(\mathcal{H}') = \text{nodes}(\mathcal{H})$ and $\text{edges}(\mathcal{H}') = \text{edges}(\mathcal{H}) \setminus \{e\}$
Ear Removal

- An **ear** of a hypergraph \mathcal{H} is a hyperedge e of \mathcal{H} such that for some other hyperedge $e' \neq e$, every node in e is either in e' or does not appear in any other hyperedge (i.e., unique to e).
- An **ear removal** on \mathcal{H} is the operation of obtaining a new hypergraph \mathcal{H}' by removing an ear e of \mathcal{H}.
 - $\text{nodes}(\mathcal{H}') = \text{nodes}(\mathcal{H})$ and $\text{edges}(\mathcal{H}') = \text{edges}(\mathcal{H}) \setminus \{e\}$
- Example:
Acyclic Hypergraphs

Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:
ACYCLIC HYPERGRAPHS

Proposition

Let \(\mathcal{H} \) be a hypergraph. The following are equivalent:

1. \(\mathcal{H} \) has a join tree.
Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
2. By repeatedly applying ear removal, one can eliminate all the hyperedges of \mathcal{H}.

Acyclic Hypergraphs

Proposition

Let \mathcal{H} be a hypergraph. The following are equivalent:

1. \mathcal{H} has a join tree.
2. By repeatedly applying ear removal, one can eliminate all the hyperedges of \mathcal{H}.

If \mathcal{H} satisfies the above conditions, then \mathcal{H} is said to be *acyclic.*
You will prove the proposition in a home assignment
You will prove the proposition in a home assignment.

In particular, you will show how to build a join tree for a given \mathcal{H} via ear removal.
Comments

- You will prove the proposition in a home assignment
- In particular, you will show *how to build a join tree for a given \(\mathcal{H} \) via ear removal*
 - Efficiently!
 - (This will be used later in this lecture)
You will prove the proposition in a home assignment.

In particular, you will show how to build a join tree for a given \mathcal{H} via ear removal.

- Efficiently!
- (This will be used later in this lecture)

When \mathcal{H} is a graph (i.e., every hyperedge has exactly two nodes), then acyclicity is the usual notion of graph acyclicity (forest).
Acyclic CQs

- A CQ expression α is \textit{acyclic} if its associated hypergraph \mathcal{H}_α is acyclic.
Acyclic CQs

- A CQ expression α is *acyclic* if its associated hypergraph \mathcal{H}_α is acyclic.

- *Which of the following is acyclic?*

\[
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \bigotimes S(x_1, \ldots, x_n)
\]
Acyclic CQs

- A CQ expression α is *acyclic* if its associated hypergraph H_α is acyclic.

- *Which of the following is acyclic?*

\[
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \\
\left(\bigotimes_{1 \leq i < j \leq n} R_{i,j}(x_i, x_j) \right) \Join S(x_1, \ldots, x_n)
\]

- *Which of the above can be solved in polynomial total time?*
Table of Contents

1. Introduction
2. Acyclic Joins
3. Algorithm for Acyclic Joins (Yannakakis)
4. Joins with Hypertree Decompositions
In this part we describe the algorithm of Mihalis Yannakakis [Yan81] for computing acyclic CQs. The algorithm terminates in polynomial total time. Recall: polynomial time in the combined size of the input and the output.
Main Steps of The Algorithm

Input: CQ expression $\alpha = \pi_A(R_1 \bowtie \cdots \bowtie R_k)$, instance I

1. Compute a join tree T for \mathcal{H}_α
2. Apply a *full reduction* to I according to T
3. Compute $\alpha(I)$ in leaf-to-root order according to T, projecting out every *redundant variable*
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure
- We will view the join tree as directed and ordered by:
 - Selecting an arbitrary root that all nodes are reachable from
 - This action determines all directions
 - Selecting an arbitrary order among every set of siblings
Computing a Join Tree

- This can be done (in polynomial time) by the ear-removal procedure.
- We will view the join tree as *directed* and *ordered* by:
 - Selecting an arbitrary *root* that all nodes are reachable from.
 - This action determines all directions.
 - Selecting an arbitrary order among every set of siblings.
- In the next slides, denote this (directed & ordered) tree by T.
Notation

- For each node \(v \) of \(T \), let:
 - \(R_v \) be the relation symbol that corresponds to \(v \)
 - \(r_v \) be the relation of \(I \) over \(R_v \)
Notation

- For each node v of T, let:
 - R_v be the relation symbol that corresponds to v
 - r_v be the relation of I over R_v

- Example: $\pi_{x,y}(R(x,y,z) \Join S(x,u) \Join T(y,z,w))$

```
\begin{align*}
R_v &= R \\
R_{v'} &= T \\
R_{v''} &= S
\end{align*}
```
Intuition on Full Reduction (1)
Intuition on Full Reduction (2)
Applying a Full Reduction

- Procedure called *Inside-Out*, using two passes
Procedure called *Inside-Out*, using two passes

1. Leaf-to-root (inside):
 1. **for** all nodes \(v \) of \(T \) in *leaf-to-root order* **do**
 2. **if** \(v \) is not the root of \(T \) **then**
 3. \(r_p := r_p \times r_v \), where \(p \) is the parent of \(v \)
Applying a Full Reduction

- Procedure called *Inside-Out*, using two passes
 1. Leaf-to-root (inside):
 1. for all nodes v of T in leaf-to-root order do
 2. if v is not the root of T then
 3. $r_p := r_p \times r_v$, where p is the parent of v
 2. Root-to-leaf (out):
 1. for all nodes v of T in root-to-leaf order do
 2. for all children c of v do
 3. $r_c := r_c \times r_v$
Leaf-to-Root Join

- For each node \(v \) of \(T \), let:
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
 - P_v be the set of attributes shared by v and its parent (empty for the root)
Leaf-to-Root Join

For each node v of T, let:

- T_v be the subtree of T rooted at v
- O_v be the set of projected attributes that appear in T_v
- P_v be the set of attributes shared by v and its parent (empty for the root)

We apply the join as follows:

1. for all nodes v of T in leaf-to-root order do
2. let c_1, \ldots, c_k be the children of v;
3. $\text{result}(v) := \pi_{O_v,P_v}(r_v \Join \text{result}(c_1) \Join \cdots \Join \text{result}(c_k))$
Leaf-to-Root Join

- For each node v of T, let:
 - T_v be the subtree of T rooted at v
 - O_v be the set of projected attributes that appear in T_v
 - P_v be the set of attributes shared by v and its parent (empty for the root)

- We apply the join as follows:

1. for all nodes v of T in leaf-to-root order do
2. let c_1, \ldots, c_k be the children of v;
3. $\text{result}(v) := \pi_{O_v, P_v}(r_v \bowtie \text{result}(c_1) \bowtie \cdots \bowtie \text{result}(c_k))$

- The result is $\text{result}(\text{root}(T))$
Proof idea:

Every tuple that is deleted does not contribute to the overall result of the join; why so?

On the other hand, after the full reduction, there are no "hanging tuples" in \(r_v \) (every tuple participates in the join).

Similarly, in the evaluation, there are no hanging tuples in \(\text{result} \) (every tuple can be extended to a join tuple).

Consequently:

We compute the correct result.

The size of each \(\text{result} \) is polynomial in the size of the final output.
Proof idea:

- Every tuple that is deleted does not contribute to the overall result of the join; why so?
- On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
Proof idea:

- Every tuple that is deleted does not contribute to the overall result of the join; why so?
- On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
- Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple can be extended to a join tuple)
Proof idea:
- Every tuple that is deleted does not contribute to the overall result of the join; *why so?*
- On the other hand, after the full reduction, there are no "hanging tuples" in r_v (every tuple participates in the join)
- Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple can be extended to a join tuple)
- Consequently:
Proof idea:

- Every tuple that is deleted does not contribute to the overall result of the join; why so?
- On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
- Similarly, in the evaluation, there are no hanging tuples in $\text{result}(v)$ (every tuple can be extended to a join tuple)
- Consequently:
 - We compute the correct result
Correctness and Efficiency (Sketch)

- Proof idea:
 - Every tuple that is deleted does not contribute to the overall result of the join; why so?
 - On the other hand, after the full reduction, there are no “hanging tuples” in r_v (every tuple participates in the join)
 - Similarly, in the evaluation, there are no hanging tuples in result(v) (every tuple can be extended to a join tuple)
 - Consequently:
 - We compute the correct result
 - The size of each result(v) is polynomial in the size of the final output
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Acyclic Joins</td>
</tr>
<tr>
<td>3</td>
<td>Algorithm for Acyclic Joins (Yannakakis)</td>
</tr>
<tr>
<td>4</td>
<td>Joins with Hypertree Decompositions</td>
</tr>
</tbody>
</table>
Intuition (1)
Intuition (1)
Intuition (2)
Intuition (2)
Intuition (2)
Intuition (3)
Intuition (3)
Intuition (3)
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A Tree Decomposition (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \mathcal{H} be a hypergraph
- A *Tree Decomposition (TD)* of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \mathcal{H} be a hypergraph
- A **Tree Decomposition** (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called *bag*) of nodes(\mathcal{H}), so that:
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \mathcal{H} be a hypergraph
- A Tree Decomposition (TD) of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called bag) of $\text{nodes}(\mathcal{H})$, so that:
 - For every hyperedge $e \in \text{edges}(\mathcal{H})$ there is a node t of T such that $e \subseteq \chi(t)$
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM+05]
- Let \(H \) be a hypergraph
- A **Tree Decomposition** \((TD)\) of \(H \) is a pair \((T, \chi)\) with the following properties:
 - \(T \) is a tree
 - \(\chi \) is a function that maps every node \(t \) of \(T \) to a subset (called **bag**) of \(\text{nodes}(H) \), so that:
 - For every hyperedge \(e \in \text{edges}(H) \) there is a node \(t \) of \(T \) such that \(e \subseteq \chi(t) \)
 - Every node \(v \) of \(H \) occurs in a connected subtree of \(T \); that is, \(\{t \in \text{nodes}(T) \mid v \in \chi(t)\} \) induces a connected subtree of \(T \)
Tree Decomposition of a Hypergraph

- Definitions of this part taken from Gottlob et al. [GGM⁺05]
- Let \mathcal{H} be a hypergraph
- A **Tree Decomposition (TD)** of \mathcal{H} is a pair (T, χ) with the following properties:
 - T is a tree
 - χ is a function that maps every node t of T to a subset (called *bag*) of nodes(\mathcal{H}), so that:
 - For every hyperedge $e \in$ edges(\mathcal{H}) there is a node t of T such that $e \subseteq \chi(t)$
 - Every node v of \mathcal{H} occurs in a connected subtree of T; that is, \{ $t \in$ nodes(T) $|$ $v \in \chi(t)$ \} induces a connected subtree of T
 - Note: if (T, χ) is a TD of \mathcal{H}, then T is a *join tree* over the bags

\[39/52\]
Another Example (Think Join)
Another Example (Think Join)
Quality?

- Every hypergraph has a TD!
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”*?
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
- This could be achieved if each bag could be *covered* by a small number of relations
Quality?

- Every hypergraph has a TD!
- *In what sense is a TD “good”?*
- Depends on the context!
- In our case, we would like be able to efficiently compute the part of the join that corresponds to each bag
- This could be achieved if each bag could be *covered* by a small number of relations
- Just intuition... Later we show how exactly that helps to get complexity bounds
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph
Let \mathcal{H} be a hypergraph

A *Generalized Hypertree Decomposition (GHD)* of \mathcal{H} is a triple (T, χ, λ) such that:

- (T, χ) is a tree decomposition of \mathcal{H}
- λ is a function that maps every node t of T to a subset of edges (\mathcal{H}) that covers $\chi(t)$; that is, $\chi(t) \subseteq \bigcup_{e \in \lambda(t)} e$

The width of a GHD (T, χ, λ) is the maximal number of hyperedges needed for covering a node; that is, $\max_{t \in \text{nodes}(T)} |\lambda(t)|$.

Let \mathcal{H} be a hypergraph

A Generalized Hypertree Decomposition (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:

- (T, χ) is a tree decomposition of \mathcal{H}
Let \mathcal{H} be a hypergraph

A *Generalized Hypertree Decomposition* (GHD) of \mathcal{H} is a triple (T, χ, λ) such that:

- (T, χ) is a tree decomposition of \mathcal{H}
- λ is a function that maps every node t of T to a subset of edges(\mathcal{H}) that *covers* $\chi(t)$; that is, $\chi(t) \subseteq \bigcup \lambda(t)$
 - $\bigcup \lambda(t)$ means $\bigcup_{e \in \lambda(t)} e$
Generalized Hypertree Decomposition

- Let \mathcal{H} be a hypergraph.
- A **Generalized Hypertree Decomposition (GHD)** of \mathcal{H} is a triple (T, χ, λ) such that:
 - (T, χ) is a tree decomposition of \mathcal{H}
 - λ is a function that maps every node t of T to a subset of $\text{edges}(\mathcal{H})$ that covers $\chi(t)$; that is, $\chi(t) \subseteq \bigcup \lambda(t)$
 - $\bigcup \lambda(t)$ means $\bigcup_{e \in \lambda(t)} e$
 - The **width** of a GHD (T, χ, λ) is the maximal number of hyperedges needed for covering a node; that is $\max \{|\lambda(t)| \mid t \in \text{nodes}(T)\}$
The generalized hypertree width (\textit{ghw}) of a hypergraph \(\mathcal{H} \) is the minimum of the widths of all \textit{GHDs} of \(\mathcal{H} \).
Generalized Hypertree Width

- The generalized hypertree width (ghw) of a hypergraph \mathcal{H} is the minimum of the widths of all GHDs of \mathcal{H}.
- The ghw of a CQ expression α is the ghw of \mathcal{H}_α.

The generalized hypertree width (ghw) of a hypergraph \mathcal{H} is the minimum of the widths of all GHDs of \mathcal{H}. The ghw of a CQ expression α is the ghw of \mathcal{H}_α.

Claim (easy to prove): α (or \mathcal{H}) is acyclic if and only if its ghw is 1.
Generalized Hypertree Width

- The \textit{generalized hypertree width (ghw)} of a hypergraph \mathcal{H} is \textit{the minimum of the widths of all GHDs} of \mathcal{H}.
- The ghw of a CQ expression α is the ghw of \mathcal{H}_α.
- Claim (easy to prove): α (or \mathcal{H}) is acyclic if and only if its ghw is 1.
Utilizing Bounded ghw

We now show how a small (bounded) ghw can be used for efficiently computing a join.
For each hyperedge e of \mathcal{H}_α, let:

- R_e be the relation symbol that corresponds to e
- r_e be the relation of I over R_e
Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α.

\[\text{Given an instance } I, \text{ we can compute } \alpha(I) \text{ as follows:} \]

1. For each node t of T, compute the relation $r(t) := \pi_{\chi(t)}(t) \mid_{e \in \lambda(t)}$
2. Next, for each relation r_i, find a node t such that $\chi(t)$ contains all the attributes of R_i and set:
 \[r(t) := r(t) \setminus r_i \]
 That is, delete from $r(t)$ every tuple that cannot be joined with any tuple from r_i.

\[\text{That is, delete from } r(t) \text{ every tuple that cannot be joined with any tuple from } r_i. \]
Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α

Given an instance I, we can compute $\alpha(I)$ as follows
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α
- Given an instance I, we can compute $\alpha(I)$ as follows
- For each node t of T compute the relation

$$r(t) := \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right)$$
CQ Evaluation with a GHD (1)

- Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α.
- Given an instance I, we can compute $\alpha(I)$ as follows.
- For each node t of T compute the relation
 \[
 r(t) := \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right)
 \]
- Next, for each relation r_i find a node t such that $\chi(t)$ contains all the attributes of R_i and set:
 \[
 r(t) := r(t) \Join r_i
 \]
Let α be a CQ expression, and let (T, χ, λ) be a GHD of \mathcal{H}_α.

Given an instance I, we can compute $\alpha(I)$ as follows:

For each node t of T compute the relation

$$r(t) := \pi_{\chi(t)} \left(\bigotimes_{e \in \lambda(t)} r_e \right)$$

Next, for each relation r_i find a node t such that $\chi(t)$ contains all the attributes of R_i and set:

$$r(t) := r(t) \bigotimes r_i$$

That is, delete from $r(t)$ every tuple that cannot be joined with any tuple from r_i.

Now we have the following:
Now we have the following:

\[\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \]
Now we have the following:

\[\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \]
\[\pi_A \left(\bigotimes_{i=1}^{m} r_i \right) = \pi_A \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right) \]
Now we have the following:

- \(\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t) \)
- \(\pi_A\left(\bigotimes_{i=1}^{m} r_i \right) = \pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right) \)
- \(\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right) \) is an acyclic CQ expression
Now we have the following:

- $\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t)$
- $\pi_A \left(\bigotimes_{i=1}^{m} r_i \right) = \pi_A \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$
- $\pi_A \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$ is an **acyclic CQ expression**

- Apply Yannakakis’s to compute $\pi_A \left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$
Now we have the following:

- $\bigotimes_{i=1}^{m} r_i = \bigotimes_{t \in \text{nodes}(T)} r(t)$
- $\pi_A\left(\bigotimes_{i=1}^{m} r_i \right) = \pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$
- $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$ is an acyclic CQ expression

- Apply Yannakakis’s to compute $\pi_A\left(\bigotimes_{t \in \text{nodes}(T)} r(t) \right)$
- That’s it!
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called *hypertree decomposition*, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called *hypertree decomposition*, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called *hypertree decomposition*, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
- We define the *Hypertree Width* of a hypergraph \mathcal{H} as the minimal width over all hypertree decompositions of \mathcal{H}
Finding a GHD

- It is NP-complete to decide whether a given a hypergraph \mathcal{H} has a ghw at most k for any constant $k \geq 3$ [GMS09]
- Nevertheless, there is a restricted variant of a GHD, called *hypertree decomposition*, which can be found in polynomial time for every fixed k
 - Basically, it is a GHD with an additional requirement
- We do not discuss hypertree decompositions here, but still:
- We define the *Hypertree Width* of a hypergraph \mathcal{H} as the minimal width over all hypertree decompositions of \mathcal{H}
- Fact: A hypergraph is acyclic if and only if its hypertree width (and ghw) is 1
Theorem

For every constant k, CQ expressions with hypertree width at most k can be evaluated in polynomial total time.a

aIn fact, polynomial delay [KS06]

End of lecture 4
Computing Joins