Principles of Managing Uncertain Data

Lecture 7: Inconsistent Databases
Table of Contents

1. Introduction
2. Inconsistent Databases
3. Repairs
4. Consistent Query Answering
5. Complexity Aspects
Table of Contents

1. Introduction
2. Inconsistent Databases
3. Repairs
4. Consistent Query Answering
5. Complexity Aspects
Inconsistency in Databases

- Various applications rely on inconsistent data:
 - Multiple, autonomous sources of data
 - Each may be consistent, but there may be disagreements across different sources
 - Data with potential errors (e.g., socially-maintained encyclopedias)
 - Imprecise data-generation processes (e.g., text extraction)
- In a database context, inconsistency means that we have *integrity constraints* (phrased over the schema), and these are *violated*
So, What to Do?

- Manual correction of data
 - Very limited in scale, not always possible
- Heuristic automated *cleaning* (e.g., if a person has two salaries, take the average)
 - Very common approach
 - Valuable information may be lost
 - Significant errors may be introduced
- **Consistent query answering**
 - Do the best you can without resolving conflicts
 - *This lecture*
Consistent Query Answering (CQA)

- Introduced in 1999 by Arenas, Bertossi Chomicki [ABC99]
- Idea: query engine considers all possible ways of “repairing” the data
 - A repair should mimic a legitimate manual cleaning
 - Formal definitions always involve a notion of a “minimal change”
- To answer a query, give the answers that are valid no matter which repair is being used
- Ideally, considering “all possible repairs” is only conceptual, and efficient algorithms answer queries much more efficiently
 - As we shall see, some combinations of queries and constraints allow for efficiency; others do not
Research on CQA

- Lots of research followed the 1999 paper [ABC99]
 - > 830 citations currently in Google Scholar
- Complexity and algorithmic approaches to CQA
- Different classes of queries and integrity constraints
- Richer/different notions of “repairs”
 - Different update actions
 - Different notions of minimality
 - Tuple preferences to refine the cleaning process
 - Research @Technion
Table of Contents

1 Introduction

2 Inconsistent Databases

3 Repairs

4 Consistent Query Answering

5 Complexity Aspects
Recalling Schemas

- A schema \mathcal{S} is a pair (\mathcal{R}, Σ), where $\mathcal{R} = \{R_1, \ldots, R_m\}$ is a signature (set of relation schemas) and Σ is a set of logical constraints over \mathcal{R}.
The framework of repairs does not restrict the kind of integrity constraints that can be used.

But the kind of constraints may have a crucial impact on the form of the repairs, as well as the complexity of CQA.
Considered Constraints

- We will focus here on two kinds of integrity constraints:
 - **Functional Dependencies (FDs)**
 - Recall: \(R : U \rightarrow V \), where \(U \) and \(V \) are sets of attributes of \(R \)
 - As a special case, we say that \(\Sigma \) consists of primary-key constraints if \(\Sigma \) associates (at most) one FD to each relation, and that FD is a key constraint
 - **Inclusion Dependencies (INDs)**
 - Recall: \(R[A_1, \ldots, A_m] \subseteq S[B_1, \ldots, B_m] \) where \(A_1, \ldots, A_m \) are distinct attributes of \(R \) and \(B_1, \ldots, B_m \) are distinct attributes of \(S \)
 - In the case of \(m = 1 \) it is called a referential constraint
Inconsistent Databases

Definition of an Inconsistent Database

Let $S = (R, \Sigma)$ be a schema. An inconsistent database is a database I over R, such that I may violate Σ.
Running Example

<table>
<thead>
<tr>
<th>CT</th>
<th></th>
<th>ST</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>course</td>
<td>ta</td>
<td>student</td>
<td>track</td>
</tr>
<tr>
<td>PL</td>
<td>Ahuva</td>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
<td>Asma</td>
<td>DataEng</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alon</td>
<td>BioInf</td>
</tr>
</tbody>
</table>

Constraints:
- $CT[\text{ta}] \subseteq ST[\text{student}]$
 - This is a referential constraint
- $ST: \text{student} \rightarrow \text{track}$
 - This is an FD and a key constraint
Table of Contents

1. Introduction
2. Inconsistent Databases
3. Repairs
4. Consistent Query Answering
5. Complexity Aspects
Let I and J be two databases over the same signature. Recall that we view I and J as sets of facts $R(t)$, where R is a relation and t is a tuple of R.

The symmetric difference between I and J, denoted $\Delta(I, J)$, is the set of all the facts in J and I that occur in one of the two, but not in both.

Formally, $\Delta(I, J) = (I \cup J) \setminus (I \cap J)$.

Equivalently, $\Delta(I, J) = (I \setminus J) \cup (J \setminus I)$.

Symmetric Difference
Example 1

\[
\Delta(I, J) = \{\text{CT}(\text{AI}, \text{Avner}), \text{ST}(\text{Asma}, \text{BioInf})\}
\]
Example 2

I:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

J:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

$\Delta(I, J) = \{ST(Asma, DataEng), ST(Avner, SWEng)\}$
Let I be an inconsistent database

Let J_1 and J_2 be two databases of the same signature as I

We say that J_1 is at least as close to I as J_2, denoted $J_1 \leq_I J_2$, if $\Delta(I, J_1) \subseteq \Delta(I, J_2)$

\leq_I is a partial order

- That is, reflexive, antisymmetric, and transitive

Proof?
Definition (Repair) [ABC99]

Let S be a schema. Let I be an inconsistent database over S, and let $Inst(S)$ be the set of all the (consistent) databases over S. A *repair* of I is a member of $Inst(S)$ that is minimal under \leq_I. We denote by $\text{Repairs}_\Sigma(I)$ the set of all the repairs of I.
Repair Examples

Given the inconsistent database repairs I, we have:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

And for the consistent database ST:

<table>
<thead>
<tr>
<th>student</th>
<th>track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>DataEng</td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td>Alon</td>
<td>BioInf</td>
</tr>
</tbody>
</table>

The repairs are consistent according to $CT[t_a] \subseteq ST[\text{student}]$ and $ST: student \rightarrow track$.

$CT[t_a] \subseteq ST[\text{student}]$

$ST : student \rightarrow track$
Repair Examples

I:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

ST

<table>
<thead>
<tr>
<th>student</th>
<th>track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>DataEng</td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td>Alon</td>
<td>BioInf</td>
</tr>
</tbody>
</table>

\[\text{CT}[\text{ta}] \subseteq \text{ST}[\text{student}] \]

\[\text{ST} : \text{student} \rightarrow \text{track} \]

\[\Delta(I, J) = \{ \text{CT}(\text{AI}, \text{Avner}), \text{ST}(\text{Asma}, \text{BioInf}) \} \]
Repair Examples

I:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>student</th>
<th>track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>DataEng</td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td>Alon</td>
<td>BioInf</td>
</tr>
</tbody>
</table>

\[CT[\text{ta}] \subseteq ST[\text{student}]\]

\[\text{ST} : \text{student} \rightarrow \text{track}\]

J:

<table>
<thead>
<tr>
<th>course</th>
<th>ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ahuva</td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>student</th>
<th>track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
</tr>
<tr>
<td>Alon</td>
<td>BioInf</td>
</tr>
<tr>
<td>Avner</td>
<td>SWEng</td>
</tr>
</tbody>
</table>

\[\Delta(I,J) = \{\text{ST(Asma,DataEng)}, \text{ST(Avner,SWEng)}\}\]
Example of a non-Repair

\[\Delta(I, J) = \{ CT(AI, Avner), ST(Asma, BioInf), ST(Asma, DataEng), ST(Asma, SWEng) \} \]
Subset Repairs

- Let $S = (\mathcal{R}, \Sigma)$ be a schema
- A constraint $\sigma \in \Sigma$ is **anti-monotone** if its satisfaction is preserved in subsets; formally, for every databases J and J' over \mathcal{R} we have:

 $$J \models \sigma \text{ and } J' \subseteq J \Rightarrow J' \models \sigma$$

- We say that Σ is **anti-monotone** if each of its members is anti-monotone
 - Hence, if Σ is anti-monotone then its satisfaction is preserved in sub-instances
Examples of Anti-Monotone Constraints

- Functional dependencies
 - Why?
- Denial constraints $\forall x \neg (\varphi(x) \land \psi(x))$
 - Why?
- What about referential constraints $R[A] \subseteq S[B]$?
Proposition

Let $S = (\mathcal{R}, \Sigma)$ be a schema such that Σ is anti-monotone, and I an inconsistent database over S. Then every repair of I is a subinstance of I; that is, if $J \in \text{Repairs}_\Sigma(I)$ then $J \subseteq I$.
Recall: an independent set in a graph is a set of nodes that does not contain any edge.

Let $S = (R, \Sigma)$ be a schema, such that Σ consists of only functional dependencies, and let I be an inconsistent database over S.

A repair can be viewed as a maximal independent set of a graph.

Which graph?

Nodes are the facts of I, edges $\{f, g\}$ whenever f and g violate an FD in Σ.

General Anti-Monotone Constraints

- In the case of more general anti-monotone constraints (e.g., DCs), we use the concept of a *hypergraph* (where an edge is any set of items, not necessarily pairs)
 - It is called the *conflict hypergraph*
- What is an *independent set of a hypergraph*?
Exercise: Counting Repairs 1

- The following signature \mathcal{R} has a single relation symbol:

 $\text{Act}(actor, email, movie, role)$

- Suppose that Σ consists of the following FDs:

 $actor \rightarrow email$

- Suggest an algorithm for counting the repairs of an inconsistent database I over
Exercise: Counting Repairs 2

- The following signature R has a single relation symbol:

 \[\text{Act}(\text{actor}, \text{email}, \text{movie}, \text{role}) \]

- Suppose that Σ consists of the following FDs:

 \[\text{actor} \rightarrow \text{email} \]
 \[\text{actor} \text{ movie} \rightarrow \text{role} \]

- Suggest an algorithm for counting the repairs of an inconsistent database I over (R, Σ)
Exercise: Counting Repairs 3

- The following problem is \#P-hard: given a bipartite graph, count the maximal matches.
- Consider the signature \(\mathcal{R} \) with the single relation symbol:

 \[\text{CEO}(\text{company}, \text{person}) \]

- Suggest FDs so that you can translate the problem of counting maximal matches into the problem of counting repairs.
Table of Contents

1. Introduction
2. Inconsistent Databases
3. Repairs
4. **Consistent Query Answering**
5. Complexity Aspects
Recalling Database Queries

- Let $\mathcal{S} = (R, \Sigma)$ be a schema.
- Recall that a query Q over \mathcal{S} is associated with a heading (A_1, \ldots, A_k), which is a sequence of distinct attributes.
- Q maps every database $I \in \text{Inst}(\mathcal{S})$ into a relation $Q(I)$ over the heading of Q.
- A query with an empty heading is called Boolean, and we denote $Q(I)$ as either true or false.
Definition (Consistent Answers)

Let $S = (R, \Sigma)$ be a schema, Q a query over S, and I an inconsistent database over S. A tuple a is a **consistent answer** if $a \in Q(J)$ for every repair J. We denote by $\text{Consistent}_\Sigma(Q, I)$ the set of all consistent answers. Hence, we have:

$$\text{Consistent}_\Sigma(Q, I) = \bigcap_{J \in \text{Repairs}_\Sigma(I)} Q(J)$$
CQA Examples

\[I: \]

\[
\begin{array}{c|c}
\text{course} & \text{ta} \\
\hline
\text{PL} & \text{Ahuva} \\
\text{OS} & \text{Asma} \\
\text{AI} & \text{Avner} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{student} & \text{track} \\
\hline
\text{Ahuva} & \text{SWEng} \\
\text{Asma} & \text{DataEng} \\
\text{Asma} & \text{BioInf} \\
\text{Alon} & \text{BioInf} \\
\end{array}
\]

\[\text{CT[ta]} \subseteq \text{ST[student]} \]

\[\text{ST : student} \rightarrow \text{track} \]

- **Courses and tracks of their TAs**
 - (PL, SWEng)
- **All courses**
 - PL, OS
More Interesting Example

$I:$

<table>
<thead>
<tr>
<th>lecturer</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avia</td>
<td>AI</td>
</tr>
<tr>
<td>Avia</td>
<td>DB</td>
</tr>
<tr>
<td>Aharon</td>
<td>DB</td>
</tr>
</tbody>
</table>

$\text{LC: lecturer } \rightarrow \text{ course}$

$TC:$

<table>
<thead>
<tr>
<th>ta</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>AI</td>
</tr>
<tr>
<td>Ahuva</td>
<td>DB</td>
</tr>
<tr>
<td>Asma</td>
<td>DB</td>
</tr>
</tbody>
</table>

$\text{TC: ta } \rightarrow \text{ course}$

$\text{TC: course } \rightarrow \text{ ta}$

Which lecturers have a TA?
In the case of a Boolean query Q, CQA boils down to “is Q true in every repair?”

As usual, Boolean CQs are useful for complexity analysis.
Boolean CQA Example

\[I: \]

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>course</td>
<td>ta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Ahuva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>Asma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Avner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>student</td>
<td>track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahuva</td>
<td>SWEng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asma</td>
<td>DataEng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asma</td>
<td>BioInf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alon</td>
<td>BioInf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[CT[ta] \subseteq ST[\text{student}] \]

\[ST: \text{student} \rightarrow \text{track} \]

- **Is there any TA from BioInf?**
- **Can we find at least two tracks with TAs?**
Table of Contents

1. Introduction
2. Inconsistent Databases
3. Repairs
4. Consistent Query Answering
5. Complexity Aspects
The literature of inconsistent databases studies several computational problems:

- Repair Checking
- Consistent Query Answering (CQA)
- Construction of a “good” repair (cleaning)
- Repair counting
- Repair enumeration
Problem Def. (Repair Checking)

Let $S = (R, \Sigma)$ be a schema. *Repair checking* is the problem of deciding, given an inconsistent database I and a consistent database J, whether J is a repair of I.

In notation: given $I \in \text{Inst}(R)$ and $J \in \text{Inst}(S)$, determine whether $J \in \text{Repairs}_\Sigma(I)$.
Easy Exercise

- Let $S = (R, \Sigma)$ be a schema
- Suppose that both of the following hold:
 - Σ is anti-monotone
 - $J \models \Sigma$ can be tested in polynomial time, given a database J over R
- Prove that repair checking is solvable in polynomial time
Example of Intractable Repair Checking

Theorem

Let S be the schema with the relation $R(A, B, C, D)$ and the constraints $R : A \rightarrow B$ and $R[C] \subseteq R[D]$. Then repair checking is coNP-complete over S.

- Proof by reduction from (the complement of) CNF-SAT
- Input of CNF-SAT is a formula $\varphi = c_0 \land \cdots \land c_{m-1}$
 - Each c_i is a disjunction $l^1_i \lor \cdots \lor l^k_i$ of literals
 - A *literal* is either a variable x (positive) or a negated variable $\neg x$ (negative)
 - Example: $\varphi = (x \lor y \lor z) \land (x \lor \neg y \lor w) \land (\neg x \lor \neg z \lor w)$
- Goal: is there any truth assignment that satisfies φ?
Proof (from [CM05])

- $R(A, B, C, D)$ with $R : A \rightarrow B$ and $R[C] \subseteq R[D]$
- Given $\varphi = c_0 \land \cdots \land c_{m-1}$, we construct I and J
- I contains:
 - $R(x, 1, (i + 1) \mod m, i)$ for every clause c_i with the positive literal x
 - $R(x, 0, (i + 1) \mod m, i)$ for every clause c_i with the negative literal $\neg x$
- J is empty
Proof (from [CM05])

\[R(A, B, C, D) \text{ with } R : A \rightarrow B \text{ and } R[C] \subseteq R[D] \]

Example: \(\varphi = (x \lor y \lor z) \land (x \lor \neg y \lor w) \land (\neg x \lor \neg z \lor w) \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Proof (from [CM05])

\[R(A, B, C, D) \] with \(R : A \rightarrow B \) and \(R[C] \subseteq R[D] \)

Example: \(\varphi = (x \lor y \lor z) \land (x \lor \neg y \lor w) \land (\neg x \lor \neg z \lor w) \)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(y)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(z)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(x)</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(y)</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(w)</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(x)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(z)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(w)</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Proof (from [CM05])

- Every consistent subset of I is either empty or encodes a satisfying assignment to φ
- Recall: J is not a repair if and only if there exists a repair J' such that $J' \neq J$ and $J' \leq_I J$
- Here, $\Delta(I, J) = I$ since J is empty
- For a repair J' we have $J' \leq_I J$ if and only if $\Delta(I, J') \subseteq \Delta(I, J)$
 - That is, $\Delta(I, J') \subseteq I$
 - That is, $J' \subseteq I$ (i.e., J' is a subset repair)
- Hence, a repair $J' \neq J$ with $J' \leq_I J$ must be a nonempty consistent subset of I
- Hence, if such J' exists (i.e., J is not a repair), then φ is satisfiable
Proof (from [CM05])

- The other direction is easy: if φ is satisfiable, then we can construct a subset repair $J' \neq J$
- (Left as an exercise)
Problem Def. (CQA)

Let $\mathcal{S} = (\mathcal{R}, \Sigma)$ be a schema, and let Q over a query over \mathcal{S}. CQA is the problem of deciding, given an inconsistent database I and a tuple a, whether a is a consistent answer.

In notation, given I and a, is $a \in \text{Consistent}_\Sigma(Q, I)$?
Repair Checking vs. CQA

- CQA is motivated; but what about repair checking?
- Repair checking is viewed as an indirect indication of complexity: If we wish to manage inconsistency, the setup should be such that we should at least be able to test whether one database is the repair of another.
- There is also a more formal connection:
 - Suppose that:
 - repairs are of size polynomial in the inconsistent database;
 - query evaluation is in polynomial time.
 - If repair checking is in polynomial time, then CQA is in coNP
 - Why?
Example of a Tractable CQ

<table>
<thead>
<tr>
<th>(LC(\text{lecturer, course}))</th>
<th>(CT(\text{course, ta}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{lecturer} \rightarrow \text{course})</td>
<td>(\text{course} \rightarrow \text{ta})</td>
</tr>
</tbody>
</table>

\[\begin{array}{|c|c|} \hline \text{lecturer} & \text{course} \rule{0pt}{2.6ex} \\ \hline \text{Keren} & \text{PL} \rule{0pt}{2.6ex} \\ \text{Keren} & \text{DB} \\ \text{Eran} & \text{PL} \\ \text{Eran} & \text{AI} \rule{0pt}{2.6ex} \\ \hline \end{array} \] \hspace{1cm} \begin{array}{|c|c|} \hline \text{course} & \text{ta} \rule{0pt}{2.6ex} \\ \hline \text{PL} & \text{Ahuva} \rule{0pt}{2.6ex} \\ \text{PL} & \text{Asma} \\ \text{AI} & \text{Avner} \\ \text{OS} & \text{Ahuva} \rule{0pt}{2.6ex} \\ \hline \end{array} \]

Query: Does any course have both a lecturer and a TA?

\[Q() := L(\text{x, y}), C(\text{y, z}) \]
Example of a Tractable CQ

\[
\begin{array}{c|c}
\text{LC(lecturer, course)} & \text{CT(course, ta)} \\
\text{lecturer} \rightarrow \text{course} & \text{course} \rightarrow \text{ta}
\end{array}
\]

Query: Does any course have both a lecturer and a TA?

\[Q() \leftarrow \text{LC}(x, y), \text{CT}(y, z)\]

- \(Q\) is consistently true if and only if there is a lecturer such that every one of her courses is in CT

- \(\exists x \left[(\exists y [\text{LC}(x, y)]) \land \forall y [\text{LC}(x, y) \rightarrow \exists z [\text{CT}(y, z)]] \right]\)

- An FO query can be evaluated straightforwardly in polynomial time (recall: data complexity)
Example of an Intractable CQ

\[
\begin{align*}
\text{LC}(\text{lecturer, course}) & \quad | \quad \text{TC}(\text{ta, course}) \\
\text{lecturer} \rightarrow \text{course} & \quad | \quad \text{ta} \rightarrow \text{course}
\end{align*}
\]

Query: Does any course have both a lecturer and a TA?

\[Q() \triangleright \text{LC}(x, y), \text{TC}(x', y)\]

We now show that answering \(Q\) is coNP-complete.
Proof of Hardness (from [CM05])

\[\text{QLC}(\text{lecturer}, \text{course}) \mid \text{TC}(\text{ta}, \text{course}) \]

\[\text{lecturer} \rightarrow \text{course} \mid \text{ta} \rightarrow \text{course} \]

\[Q() :\neg \text{QLC}(x, y), \text{TC}(x', y) \]

- Proof by reduction from (the complement of) non-mixed CNF-SAT
- Input is a CNF \(\varphi = c_1 \land \cdots \land c_m \) where in each clause \(c_i \) either all literals are positive (positive clause) or all literals are negative (negative clause)
- Example:

\[\varphi = (x \lor y) \land (w \lor z) \land (\neg x \lor \neg y \lor \neg w) \]
Reduction

- Given φ, we build I:
 - $LC(i, z)$ for each **positive** c_i containing z
 - $TC(i, z)$ for each **negative** c_i containing $\neg z$
Example

lecturer → course ta → course

ϕ = (x ∨ y) ∧ (w ∨ z) ∧ (¬x ∨ ¬y ∨ ¬w) ∧ (¬x ∨ ¬z)

<table>
<thead>
<tr>
<th>LC</th>
<th>course</th>
<th>TC</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>y</td>
<td>3</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>w</td>
<td>3</td>
<td>w</td>
</tr>
<tr>
<td>2</td>
<td>z</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>
Example

$$\varphi = (x \lor y) \land (w \lor z) \land (\neg x \lor \neg y \lor \neg w) \land (\neg x \lor \neg z)$$

<table>
<thead>
<tr>
<th>LC</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>w</td>
</tr>
<tr>
<td>2</td>
<td>z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>ta</td>
<td>course</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>w</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>
Another Example of a Tractable CQ

\[
\begin{align*}
\text{LC(lecturer, course)} & \quad \text{CT(course, ta)} \\
\text{lecturer} \rightarrow \text{course} & \quad \text{course} \rightarrow \text{ta}
\end{align*}
\]

Query: Does any course have the same lecturer and TA?

\[Q() :\neg \text{LC}(x, y), \text{CT}(y, x)\]

Wijsen [Wij10] has proved:

- \(Q\) is **not** expressible in FO
- However, \(Q\) can be evaluated in polynomial time

End of lecture 7

Inconsistent Databases