MapReduce

CDP
Tutorial Outline

• MapReduce introduction and overview
• Real MapReduce implementation (Hadoop)
• Sort using MapReduce
• More examples
• Questions and solutions
Introduction

• MapReduce is a programming model and an associated implementation for processing and generating large data sets

• The programmer expresses the computation as two functions:
 – **Map:** process a *key/value* pair to generate a set of intermediate *key/value* pairs
 – **Reduce:** merge all intermediate *values* associated with the same intermediate *key*
The Map function

• Written by the user
• Takes an input pair and produces a set of intermediate key/value pairs
• The MapReduce library groups together all intermediate values associated with the same intermediate key and passes them to the reduce function
The Reduce function

• Written by the user
• Accepts an intermediate key and a set of values for that key
• Merges these values to form a possibly smaller set of values
 – Typically just zero or one output value is produced per reduce invocation (i.e. intermediate key)
Execution overview

Data → Splitter

- Handle data source, provide input pairs to mappers

Mapper → Combiner → Partition

- Usually a reduce function
- By default - hash

Mapper → Combiner → Partition

- Provided, ascending

Mapper → Combiner → Partition

Map → Shuffle/sort → Reduce

Sort → Reducer

Sort → Reducer

Output file 1

Output file 2
Example: Word Count

• Count the number of occurrences of each word in a large collection of documents
• What should the map and reduce functions do?
Word Count: mapper

```java
def map(String key, String value) {
    // key: document name
    // value: document contents
    for each word in value:
        EmitIntermediate(word, 1);
}
```

• The map function emits each word with an associated count of occurrences (just “1” in this simple example)
Word Count: reducer

```java
reduce(String key, Iterator values) {
    // key: a word
    // values: a list of counts
    int result = 0;
    for each val in values:
        result += val; // is val always 1?
    Emit(key, result);
}
```

- The reduce function sums together all counts emitted for a particular word
public class TokenizerMapper
 extends Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 StringTokenizer st = new StringTokenizer(value.toString());

 while (st.hasMoreTokens()) {
 context.write(new Text(st.nextToken()), one);
 }
 }
}
public class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) sum += val.get();
 context.write(key, new IntWritable(sum));
 }
}
Ordering Guarantees

• Every reducer gets intermediate key/value pairs in increasing key order
 – Makes it easy to generate a sorted output file per partition

• Makes distributed sort a straightforward programming task
Distributed Sort

- Map:
 - Extract sorting key from the data (e.g. text line)
 - *Emit* (key, data) as intermediate output

- Reduce:
 - The Identity function
 - Simply *emit* intermediate data as final output
Distributed Sort (2)

• Partition function takes care of global ordering:
 – Each reducer gets a contiguous range of keys
 • Say a-e, f-j, k-o, p-t, u-z
 – Local sort takes care of local ordering
 • Air before Arc
 – Is load balance guaranteed?
Example: Word Order

• Given a text document, write a map-reduce program that **orders** the words by their number of occurrences in the text

• For example, given the text:
 – “Gadolinium Gadolinium Gadolinium
 Gallium Garnet Garnet
 “

• The order should be:
 – Gallium
 – Garnet
 – Gadolinium
Example: Word Order (2)

• Solution will be in two map-reduce phases:
 1. Count the word occurrences in the document (i.e. Word Count from before)
 2. Order the words according to their number of occurrences that were calculated in the first phase
Example: Word Order (3)

• **Phase 1**: Count occurrences of each word in document:

 – *Map*:

 • For every word \(w \): \(\text{Emit} (w, 1) \) as key/value pair

 – *Reduce*:

 • Sum counts for each word \(w \) and \(\text{Emit} (w, \text{count}_w) \)
Example: Word Order (4)

- **Phase 2**: order the words according to their number of occurrences:
 - *Map*:
 - for every pair \((w, \text{count}_w)\): *Emit* \((\text{count}_w, w)\) as an intermediate *key/value* pair (note change in key)
 - *Reduce*:
 - Basically the identity function
 - Only *emit value* as output
 - Anything special for the partition function?
public class SwapMapper extends Mapper<Text, Text, IntWritable, Text> {

 private Text word = new Text();

 public void map(Text key, Text value, Context context) throws IOException, InterruptedException {
 int count = Integer.parseInt(value.toString());
 context.write(new IntWritable(count), key);
 }
}
public class OutputReducer
 extends Reducer<IntWritable, Text, Text, NullWritable> {

 private final static NullWritable nothing = NullWritable.get();

 public void reduce(IntWritable key, Iterable<Text> values,
 Context context)
 throws IOException, InterruptedException {
 for (Text val : values) {
 context.write(val, nothing);
 }
 }
}
Hadoop Input Format

• For each Hadoop job we define how to read the input from the files:
 – **TextInputFormat** (default): Splits the files to lines where the keys are the position in the file and the values are the lines
 – **KeyValueTextInputFormat**: Read each line from the files as text key/value separated by tab
 – Much more available implementations in Hadoop library
 – You can create your own input format (e.g. reading from the web)
public static void main(String[] args) throws Exception {
 // Used to pass parameters to the mappers and reducers
 Configuration conf = new Configuration();

 /* We chain the two Mapreduce phases using a temporary
 directory from which the first phase writes to, and the second
 reads from */
 Path TEMP_PATH = new Path("temp");

 ...
}

public static void main(String[] args) throws Exception {

 // Setup first MapReduce phase
 Job job1 = Job.getInstance(conf, "WordOrder-first");
 job1.setJarByClass(WordOrder.class);
 job1.setMapperClass(TokenizerMapper.class);
 job1.setReducerClass(IntSumReducer.class);
 job1.setMapOutputKeyClass(Text.class);
 job1.setMapOutputValueClass(IntWritable.class);
 job1.setOutputKeyClass(Text.class);
 job1.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job1, new Path(args[0]));
 FileOutputFormat.setOutputPath(job1, TEMP_PATH);

 ...
```java
public static void main(String[] args) throws Exception {
    ...
    boolean status1 = job1.waitForCompletion(true);
    if (!status1) System.exit(1);

    // Setup second MapReduce phase
    Job job2 = Job.getInstance(conf, "WordOrder-second");
    job2.setJarByClass(WordOrder.class);
    job2.setMapperClass(SwapMappe.class);
    job2.setReducerClass(OutputReducer.class);
    ...
    FileInputFormat.addInputPath(job2, TEMP_PATH);
    FileOutputFormat.setOutputPath(job2, new Path(args[1]));
    ...
}
```
public static void main(String[] args) throws Exception {
 ...
 boolean status2 = job2.waitForCompletion(true);

 // Clean temporary files from the first MapReduce phase
 FileSystem fs = FileSystem.get(conf);
 fs.delete(TEMP_PATH, true);

 if (!status2) System.exit(1);
}
More examples

• Distributed Grep:
 – Map:
 • *Emit* a line if it matches the supplied pattern
 – Reduce:
 • The identity function

• Count URL Access Frequency:
 – Map:
 • Process logs of web page requests and *emit* (URL, 1)
 – Reduce:
 • Add together all values for the same URL and *emit* (URL, TotalCount) pair
More examples (2)

• Reverse Web-Link Graph:
 – Map:
 • Emit (target, source) pairs for each link in a given page
 – Reduce:
 • Merge all sources leading to the target URL, and emit (target, sources-list)

• Inverted Index:
 – Map:
 • Parses each document and emit (word, document-ID) pairs
 – Reduce:
 • For each word, sort the corresponding document-IDs and emit (word, document-IDs) pair
Question

• Input is a group of text files
• Write a map-reduce program that for every input document:
 – outputs the words that have the most appearances in it compared to the other documents
• For example:
 – `doc1.txt` : "w1 w1 w2 w3"
 – `doc2.txt`: "w1 w2 w3 w3"
• The output should be:
 – `(doc1.txt, "w1, w2")`
 – `(doc2.txt, "w2, w3")`
Question (2)

• Solution will be in 2 map-reduce phases:

 1. Count the number of occurrences of every word in each document
 • For example: \((w_1, '(doc1.txt, 2), (doc2.txt, 1)')\), ...

 2. Using the output from phase 1 as input, for every file output the words in which they appear the most
Question (3)

• Phase 1 - Count the number of occurrences of every word in each document:
 – Map:
 • Receive (DocumentName, DocumentContent) and emit \((w, \text{DocumentName})\) for every word \(w\)
 – Reduce:
 • With every word \(w\) get a list of document names (with duplications)
 • Merge and count document occurrences
 • Emit \((w1, "(doc1.txt, 2), (doc2.txt, 1)"), \ldots\)
Question (4)

• Phase 2: Using the output from phase 1 as input, for every file output the words in which they appear the most:
 – Map:
 • Get a list of documents per word:
 \[(w, \"(Doc1.txt, CountDoc1), (Doc2.txt, CountDoc2), \ldots\")\]
 • Emit (Doc1.txt, \(w\)) as intermediate key/value pair only for documents with highest counter
 – Reduce:
 • For each document (used as key), merge list of words
 • Emit (document, “\(w_1, w_2, \ldots\”)
Memory management using Map-Reduce paradigm
I have an input file (~31GB in size) containing consumer reviews about some products which I'm trying to lemmatize and find the corresponding lemma counts of. The approach is somewhat similar to the WordCount example provided with Hadoop. I've 4 classes in all to carry out the processing: StanfordLemmatizer [contains goodies for lemmatizing from Stanford's coreNLP package v3.3.0], WordCount [the driver], WordCountMapper [the mapper], and WordCountReducer [the reducer].

I've tested the program on a subset (in MB's) of the original dataset and it runs fine. Unfortunately, when I run the job on the complete dataset of size ~31GB, the job fails out. I checked the syslog for the job and it contained this:

```
java.lang.OutOfMemoryError: Java heap space at
edu.stanford.nlp.sequences.ExactBestSequenceFinder.bestSequence(ExactBestSequenceFinder.java:109) [...]
```

Any suggestions on how to handle this?

Note: I'm using the Yahoo's VM which comes pre-configured with hadoop-0.18.0. I've also tried the solution of assigning more heap as mentioned in this thread: out of Memory Error in Hadoop
public class WordCountMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final IntWritable one = new IntWritable(1);
 private final Text word = new Text();
 private final StanfordLemmatizer slem = new StanfordLemmatizer();

 public void map(LongWritable key, Text value,
 OutputCollector output, Reporter reporter) throws IOException {

 String line = value.toString();
 //if the current line represents a summary/text of a review, process it!
 if(line.matches("^review/(summary|text).*")) {
 for(String lemma: slem.lemmatize(line.replaceAll("^review/(summary|text):.*", "").toLowerCase())) {
 word.set(lemma);
 output.collect(word, one);
 }
 }
 }
}
Root Cause 1: Large Intermediate Results

• Overhead of temporary data structures
• Case study (from StackOverflow):
 – Use NLP library to process customers’ review
 – Some reviews are quite long
 – NLP library creates giant temporary data structures for long reviews
• Solution: optimize library use
I keep increasing the number of reducers and I see that while all except one reducers run quickly and finish their job, one last reducer just hangs at the merge step with this message in its tasktracker log:

Down to the last merge-pass, with 3 segments left of total size: 171207264 bytes

... and after a long time staying at this statement, it throws a java heap error and starts some cleaning which just doesn't finish.

I increased the child.opts memory to 3.5GB (unable to go beyond this limit) and compressed the map output too.

What might be the cause?
Root Cause 2: Hot Keys

- Popular keys have many associated values
- Case study (from StackOverflow):
 - Process StackOverflow posts
 - Long and popular posts
 - Many tasks process long and popular posts
 - Also, double iteration
- Solution: ensure balance and optimize code
Memory Pressure in the Real World

- Memory pressure on individual nodes
- Executions push heap limit (using managed language)
- Data-parallel systems struggle for memory

![Diagram](image.png)

- Memory consumption vs Execution time
- OutOfMemoryError point
- Heap size
- Long and useless GC
- Huge GC effort
- OutOfMemory Error
MapReduce – Summary

• A big-data programming paradigm
• Composed of 2 primitives
• Many use-cases
• Implementation matters a lot
 – Basic programming conventions (e.g., no globals)
 – Memory consumption is an issue
 – Balanced partitioning
 – CPU vs. I/O use