Database Management Systems

Course 236363

Tutorial 8:
Decompositions and Normal Forms
Outline

• Decomposition
• Preserving information
 – Example
 – Algorithm for checking
• Preserving dependencies
 – Projecting FD’s
• Normal Forms
 – BCNF
 – 3NF
• Questions
Decomposition

- A decomposition of R is a set \(\{R_1, \ldots, R_n\} \) such that \(\bigcup_{i=1}^{n} R_i = R \)

- Motivation:
 - Allows a better modeling of the database

- Characteristics of a good modeling:
 - Preserves information (necessary)
 - Preserves dependencies (not necessary, desired)
Outline

- Decomposition
- **Preserving information**
 - Example
 - Algorithm for checking
- Preserving dependencies
 - Projecting FD’s
- Normal Forms
 - BCNF
 - 3NF
- Questions
Preserving Information

- R - a relational schema
- F – a set of FD’s
- \(P = \{R_1, \ldots, R_n\} \) decomposition

\(P \) preserves information with respect to F if for every relation \(r \) over \(R \) such that \(r \not\models F \) the following holds:

\[\forall_{i=1\ldots n} \pi_{R_i}(r) = r \]
Preserving Information - example

- \(R = \{ \text{ID, Name, Address} \} \)
- \(F = \{ \text{ID} \rightarrow \text{Name, ID} \rightarrow \text{Address} \} \)
- Does the following decomposition preserve data?
 - \(P = \{ R_1(\text{ID, Name}), R_2(\text{Name, Address}) \} \)

- No!
• Note that the relation obtained by joining the two projections is different than the original relation.
Preserving Information – example

- However, the decomposition
 \[\rho' = \{R'_1(ID, NAME), R'_2(ID, ADDR)\} \]
 preserves information.
- Indeed, \(\pi_{R'_1}(r) \bowtie \pi_{R'_2}(r) = r \)

\[
\begin{array}{c|c|c}
ID & NAME & ADDR \\
1 & Alice & CA \\
2 & Alice & TX \\
\end{array}
\]

\[
\begin{array}{c|c}
ID & NAME \\
1 & Alice \\
2 & Alice \\
\end{array}
\]

\[
\begin{array}{c|c}
ID & ADDR \\
1 & CA \\
2 & TX \\
\end{array}
\]
Algorithm for information preserving

- R - a relational schema and $P = \{R_1, \ldots, R_n\}$ a decomposition
- Does P preserves information?

- We show the algorithm’s run on the following example $R(A, B, C, D, E, H)$
- $P = \{R_1(A, B), R_2(A, C, D), R_3(B, E, H)\}$
Algorithm for information preserving

- 1st step - Initialization:
 - Create a relation \(r \) over \(R \) such that:
 - Every schema \(R_i \) has its own tuple \(t_i \)
 - For every attribute \(A \):
 - If \(A \in R_i \) then \(t[A] = a \)
 - Else \(t[A] = a_i \)
 - Similarly with \(b \) for \(B \), \(c \) for \(C \), etc.
Algorithm for information preserving

• In our example:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d₁</td>
<td>e₁</td>
<td>h₁</td>
</tr>
<tr>
<td>t₂</td>
<td>a</td>
<td>b₂</td>
<td>c</td>
<td>d</td>
<td>e₂</td>
<td>h₂</td>
</tr>
<tr>
<td>t₃</td>
<td>a₃</td>
<td>b</td>
<td>c₃</td>
<td>d₃</td>
<td>e</td>
<td>h</td>
</tr>
</tbody>
</table>

R(A, B, C, D, E, H)
F = {A → B, C → D, B → EH}
ρ = {R₁(A, B), R₂(A, C, D), R₃(B, E, H)}
Algorithm for information preserving

• 2nd step - chase
 – While the table changes do:
 • Look for an FD violation and equate the conclusions
 • “Equate” = change every occurrence of one to the other
 – When equating a_j with a, change a_j with a.

• 3nd step:
 – Return true if and only if there is a row without indexes.
Algorithm for information preserving

\[F = \{A \rightarrow B, C \rightarrow D, B \rightarrow EH\} \]

\[A \rightarrow B (t_1, t_2) \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d₁</td>
<td>e₁</td>
<td>h₁</td>
</tr>
<tr>
<td>t₂</td>
<td>a</td>
<td>b₂</td>
<td>c</td>
<td>d</td>
<td>e₂</td>
<td>h₂</td>
</tr>
<tr>
<td>t₃</td>
<td>a₃</td>
<td>b</td>
<td>c₃</td>
<td>d₃</td>
<td>e</td>
<td>h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d₁</td>
<td>e₁</td>
<td>h₁</td>
</tr>
<tr>
<td>t₂</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e₂</td>
<td>h₂</td>
</tr>
<tr>
<td>t₃</td>
<td>a₃</td>
<td>b</td>
<td>c₃</td>
<td>d₃</td>
<td>e</td>
<td>h</td>
</tr>
</tbody>
</table>
Algorithm for information preserving

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d₁</td>
<td>e₁</td>
<td>h₁</td>
</tr>
<tr>
<td>t₂</td>
<td>a</td>
<td>b₂</td>
<td>c</td>
<td>d</td>
<td>e₂</td>
<td>h₂</td>
</tr>
<tr>
<td>t₃</td>
<td>a₃</td>
<td>b</td>
<td>c₃</td>
<td>d₃</td>
<td>e</td>
<td>h</td>
</tr>
</tbody>
</table>

F = {A → B, C → D, B → EH}

1. A → B(t₁,t₂)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d₁</td>
<td>e₁</td>
<td>h₁</td>
</tr>
<tr>
<td>t₂</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e₂</td>
<td>h₂</td>
</tr>
<tr>
<td>t₃</td>
<td>a₃</td>
<td>b</td>
<td>c₃</td>
<td>d₃</td>
<td>e</td>
<td>h</td>
</tr>
</tbody>
</table>

2. B → EH(t₂,t₃)

- Note that we have a tuple without subscripts and thus the decomposition preserves information
Information Preserving - example

- \(R(A,B,C,D,E) \)
- \(F = \{ A \rightarrow B, \ B \rightarrow C, \ C \rightarrow D, \ DE \rightarrow BC \} \)
- \(\rho = \{ R1(A,D), R2(A,E), R3(B,C,D,E) \} \)
The Case of Binary Decomposition

THEOREM: Let \(\{X_1, X_2\} \) be a decomposition of \((U,F)\). The following are equivalent:

1. \(F \models (X_1 \cap X_2) \rightarrow X_1 \) or \(F \models (X_1 \cap X_2) \rightarrow X_2 \)
2. \(\{X_1, X_2\} \) is a lossless decomposition

So what would be a decision algorithm in this case?
• Decomposition
• Preserving information
 – Example
 – Algorithm for checking
• Preserving dependencies
 – Projecting FD’s
• Normal Forms
 – BCNF
 – 3NF
• Questions
• R - a relational schema
• F – a set of FD’s
• $S \subseteq R$
• The projection of F on S, $\pi_S F$ is the set:
 \[
 \{ X \rightarrow Y \mid X \rightarrow Y \in F^+ \land X \cup Y \subseteq S \}.
 \]

 – Intuitively, this is the set of FD’s that are relevant to S
Preserving Dependencies

• Intuition:
 – If each of the relations r_i over R_i satisfies the set of FD’s that are relevant for R_i, (i.e, $\pi_{R_i}F_i$) then all of the database satisfies F.

• Goal: simple updates
 – If a decomposition does not preserve dependencies then when we update a relation we need to check whether this update is consistent with the other relations.
 – Therefore we can live without it (although it is desired).
Preserving Dependencies - example

• \(R(\text{Phone, AreaCode, City}) \)
• \(F=\{\text{City} \rightarrow \text{AreaCode}, \)
 \((\text{AreaCode, Phone}) \rightarrow \text{City} \} \)
• \(P=\{R1(\text{Phone, City}), R2(\text{AreaCode, City})\} \)

• This decomposition preserves information:
 – City is in both \(R1 \) and \(R2 \)
 – \(R2 \backslash R1 = \text{AreaCode} \)
 – \(F \) implies \(\text{City} \rightarrow \text{AreaCode} \)
• Does it preserve dependencies?
Preserving Dependencies - example

- **R(Phone, AreaCode, City)**
- **F={City \rightarrow AreaCode, (AreaCode, Phone) \rightarrow City}**
- **P={R1(Phone, City), R2(AreaCode, City)}**
- Does this decomposition preserve dependencies?
 - No!
 - The FD [(AreaCode, Phone) \rightarrow City] is not preserved
Preserving Dependencies

• A decomposition preserves dependencies if all of F’s dependencies are preserved.

• A functional dependency f is preserved if
 – There is a schema X where f in $F[X]$
 – f can be deduced from other dependencies that are preserved in the decomposition

• In other words, $F^+ = (F [X1] \cup \cdots \cup F [Xk])^+$
Outline

• Decomposition
• Preserving information
 – Example
 – Algorithm for checking
• Preserving dependencies
 – Projecting FD’s
• **Normal Forms**
 – BCNF
 – 3NF
• Questions
Normal Forms

• Normal Form is a characteristics of relational schema that captures the “quality” of the schema in the following sense:
 – a schema is better if it prevents duplications

• We will discuss the following Normal Forms (NF):
 – BCNF
 – 3NF
BCNF – Boyce-Codd NF

• A schema R with a set F of FD’s is in BCNF if every nontrivial FD implied by F has a superkey on its premise (lhs)
 – That is, every $X \rightarrow Y$ in F^+ is such that – X is a superkey; or
 – $Y \subseteq X$
BCNF – example

- \(R = \{\text{Id, Name, Address}\} \)
- \(F = \{\text{Id} \rightarrow \text{Name}, \text{Name} \rightarrow \text{Address}\} \)

- \(R \) is not BCNF w.r.t. \(F \) since
 - The only key is \(\text{Id} \)
 - \(\text{Name} \rightarrow \text{Address} \) does not satisfy the condition

- For \(F' = \{\text{Id} \rightarrow \text{Name}, \text{Id} \rightarrow \text{Address}\} \)
 - \(R \) is BCNF w.r.t. \(F' \)
How to check whether a schema is BCNF?

By definition:

- Compute \(F^+ \)
- For every FD \(X \rightarrow Y \in F^+ \) check whether \(X \) is a superkey.

Problem: the size of \(F^+ \) is exponential in \(R \)

Theorem: If \(R \) is not BCNF with respect to \(F \) (there exists an FD \(X \rightarrow Y \in F^+ \) that violates the conditions), then there exists an FD \(Z \rightarrow W \in F \) that violates the conditions.
Often we need to choose between BCNF and Preserving Dependencies

- How should we choose?
 - If we have lots of updates of attributes that have duplications in the original database (for instance AreaCode)
 - BCNF prevents duplications
 - If we want to add/update attributes that appear in an FD that is not preserved (for instance Phone)
 - We use 3NF
3NF

• R – a relational schema
• F – a set of FD’s over R

• R is in 3NF if for every FD $X \rightarrow A \in F^+$ such that $A \notin X$
 – X is a superkey of R or
 – A is contained in a key of R
3NF - Example

- $R(\text{City, AreaCode, Phone})$
- $F = \{\text{City} \rightarrow \text{AreaCode}, (\text{AreaCode, Phone}) \rightarrow \text{City}\}$
- 3NF
 - The keys are
 - (City, Phone), (AreaCode, Phone)
 - Every FD from F satisfies 3NF conditions
 - As in BCNF, it suffices to check only those FD’s in F
Normal Forms

• Every BCNF schema is also in 3NF
 – The opposite does not necessarily hold
• BCNF prevents more duplications than 3NF
• There always exists a 3NF decomposition that preserves dependencies and information
 – This is not true in BCNF and therefore we will sometimes prefer 3NF even though it is less efficient in sense of duplications
Algorithm for 3NF Decomposition

3NFDec(U,F) {
 D = ∅
 G := MinCover(F)
 for all (X→A in G) do
 D := D∪{XA}
 if (no set in D is a superkey)
 D := D∪{FindKey(U,F)}
 D := RemoveConained(D)
 return D
}
3NF Decomposition - Example

R(DName, Daddr, ID, PAddr, PName, PresNo, MedName, Qnt)

F = \{ DName \rightarrow DAddr,
 ID \rightarrow PName,
 (ID, PName) \rightarrow PAddr,
 PresNo \rightarrow ID,
 (PresNo, MedName) \rightarrow Qnt \}
1. Minimal cover:
 \[F = \{ \text{DName} \rightarrow \text{DAddr},\]
 \[\text{ID} \rightarrow \text{PName},\]
 \[\text{ID} \rightarrow \text{PAddr},\]
 \[\text{PresNo} \rightarrow \text{ID},\]
 \[(\text{PresNo}, \text{MedName}) \rightarrow \text{Qnt} \} \]

2. We create the schemas:
 \[R_1(\text{DName}, \text{DAddr})\]
 \[R_2(\text{ID}, \text{PName})\]
 \[R_3(\text{ID}, \text{PAddr})\]
 \[R_4(\text{PresNo}, \text{ID})\]
 \[R_5(\text{PresNo}, \text{MedName}, \text{Qnt})\]

3. Adding a key : \(R_6(\text{PresNo}, \text{MedName}, \text{DName})\)

4. No contained schemas to remove
Final Decomposition:

\[R_1(\text{DName}, \text{DAddr}) \]
\[R_2(\text{ID}, \text{PName}) \]
\[R_3(\text{ID}, \text{PAddr}) \]
\[R_4(\text{PresNo}, \text{ID}) \]
\[R_5(\text{PresNo}, \text{MedName}, \text{Qnt}) \]
\[R_6(\text{PresNo}, \text{MedName}, \text{DName}) \]
• Decompose the following schema to 3NF where:
 – $R(sid, sname, cnum, cnum, cnum, grade)$
 – $F = \{ \text{sid} \rightarrow \text{sname}, \text{cnum} \rightarrow \text{name},$
 \hspace{1cm} (\text{sid}, \text{cnum}) \rightarrow \text{grade} \}$

• $R_1(sid, sname), R_2(\text{cnum}, \text{name}), R_3(\text{sid, cnum, grade})$
Outline

- Decomposition
- Preserving information
 - Example
 - Algorithm for checking
- Preserving dependencies
 - Projecting FD’s
- Normal Forms
 - BCNF
 - 3NF
- Questions
R(A,B,C,D,E,H)
F={AB \rightarrow H, E \rightarrow BC, D \rightarrow H, A \rightarrow DE, C \rightarrow E, D \rightarrow BH}

Find a minimal cover to F
F is minimal if for every X\rightarrow Y in F the following hold:
1. \(|Y| = 1\)
2. F^+ \neq (F \setminus \{X \rightarrow Y\})^+
3. For every Z \subseteq X it holds that F^+ \neq ((F \setminus \{X \rightarrow Y\}) \cup \{Z \rightarrow Y\})^+

G ← \{(X \rightarrow A) \mid \exists Y ((X \rightarrow Y) \in F \land A \in Y)\};
Repeat
1. For each f = X \rightarrow A \in G do
 if A \in X^+_{G \setminus \{f\}} then G ← G \setminus \{f\};
2. For each f = X \rightarrow A \in G and B \in X do
 if A \in (X\{B\})^+_G then G ← (G\{X \rightarrow A\}) \cup \{X\{B\} \rightarrow A\};
until no more changes to G
Questions from Exam

• Initialization
 \[G = \{ AB \rightarrow H, E \rightarrow B, E \rightarrow C, A \rightarrow D, A \rightarrow E, C \rightarrow E, D \rightarrow B, D \rightarrow H \} \]

• Step 1:
 – We omit the FD \(AB \rightarrow H \) since \(H \in G \setminus \{AB \rightarrow H\}^+ \)
 – \(G = \{ E \rightarrow B, E \rightarrow C, D \rightarrow H, A \rightarrow D, A \rightarrow E, C \rightarrow E, D \rightarrow B, D \rightarrow H \} \)

• Step 2: no change
• Step 1: no change
• G={E →B, E →C, D →H, A →D, A →E, C →E, D →B}
Questions from Exam

\[G = \{ E \rightarrow B, \ E \rightarrow C, \ D \rightarrow H, \ A \rightarrow D, \ A \rightarrow E, \ C \rightarrow E, \ D \rightarrow B \} \]

\[\rho = \{ R_1(A, B, D), \ R_2(A, C), \ R_3(C, D, E, H) \} \]

Is \(\rho \) in BCNF?

\(R_1 \) is not BCNF

\(\pi_{R_1}G = \{ A \rightarrow B, \ A \rightarrow D, \ D \rightarrow B \} \)

\(D \) is not a superkey!
Questions from Exam

\[\rho = \{ R_1(A, B, D), R_2(A, C), R_3(C, D, E, H) \} \]
\[G = \{ E \rightarrow B, E \rightarrow C, D \rightarrow H, A \rightarrow D, A \rightarrow E, C \rightarrow E, D \rightarrow B \} \]

Does this decomposition preserve information?
Questions from Exam

G = \{E \rightarrow B, \ E \rightarrow C, \ D \rightarrow H, \ A \rightarrow D, \ A \rightarrow E, \ C \rightarrow E, \ D \rightarrow B\}

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d</td>
<td>e₁</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>h₂</td>
<td></td>
</tr>
<tr>
<td>a₃</td>
<td>b₃</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>h</td>
<td></td>
</tr>
</tbody>
</table>

\[E \rightarrow B \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d</td>
<td>e₁</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>h₂</td>
<td></td>
</tr>
<tr>
<td>a₃</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>h</td>
<td></td>
</tr>
</tbody>
</table>

Yes!

\[D \rightarrow H \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td>d</td>
<td>e</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>h₂</td>
<td></td>
</tr>
<tr>
<td>a₃</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>h</td>
<td></td>
</tr>
</tbody>
</table>

236363 - DBMS, Design
Questions from Exam

\[\rho = \{ R_1(A, B, D), R_2(A, C), R_3(C, D, E, H) \} \]
\[G = \{ E \rightarrow B, E \rightarrow C, D \rightarrow H, A \rightarrow D, A \rightarrow E, C \rightarrow E, D \rightarrow B \} \]

Does this decomposition preserve dependencies?

for each \(f = (X \rightarrow Y) \in F \) do begin

\(Z_f \leftarrow X; \)

repeat

for \(i = 1 \) to \(n \) do

\(Z_f \leftarrow Z_f \cup ((Z_f \cap R_i)^+_F \cap R_i) \)

until no more change to \(Z_f \)

\(X \rightarrow Y \) is preserved iff \(Y \subseteq Z_f \)

end;

\(\rho \) is dependency preserving iff all \((X \rightarrow Y) \in F \) are preserved
Questions from Exam

\(\rho = \{R_1(A, B, D), R_2(A, C), R_3(C, D, E, H)\}\)
\(G = \{E \rightarrow B, E \rightarrow C, D \rightarrow H, A \rightarrow D, A \rightarrow E, C \rightarrow E, D \rightarrow B\}\)

\(E \rightarrow B\) is not contained in any schema

- \(Z_f = \{E\}\)
- \(Z_f \cap R_1 = \{\}\) no change to \(Z_f\)
- \(Z_f \cap R_2 = \{\}\) no change to \(Z_f\)
- \(Z_f \cap R_3 = \{E\}\)
 \(\{E\}^+ \cap R_3 = \{C, E\}\)
 \(\Rightarrow Z_f = \{C, E\}\)

- \(Z_f \cap R_1 = \{\}\) no change to \(Z_f\)
- \(Z_f \cap R_2 = \{\}\) no change to \(Z_f\)

\(E \rightarrow B\) is not preserved!