Database Management Systems
Course 236363

Tutorial 8:
Decompositions and Normal Forms

Outline
- Decomposition
- Preserving information
 - Example
 - Algorithm for checking
- Preserving dependencies
 - Projecting FD's
- Normal Forms
 - BCNF
 - 3NF
- Questions

Decomposition

- A decomposition of R is a set \{R_1, \ldots, R_n\} such that \bigcup_{i=1}^n R_i = R

- Motivation:
 - Allows a better modeling of the database
- Characteristics of a good modeling:
 - Preserves information (necessary)
 - Preserves dependencies (not necessary, desired)

Preserving Information

- R - a relational schema
- F - a set of FD's
- P=\{R_1, \ldots, R_n\} decomposition
- P preserves information with respect to F if for every relation r over R such that r \not\models F the following holds:
 \[\bigotimes_{i=1}^n \pi_{R_i}(r) = r \]

Preserving Information - example

- R=\{ID, Name, Address\}
- F=\{ID\rightarrow Name, ID\rightarrow Address\}
- Does the following decomposition preserve data?
 - P=\{R_1(ID, Name), R_2(Name, Address)
 - No!
Preserving Information – example (cont’d)

• Note that the relation obtained by joining the two projections is different than the original relation.

\[
\begin{array}{c|c|c|c}
\text{ID} & \text{NAME} & \text{ADDR} \\
1 & \text{Alice} & \text{CA} \\
2 & \text{Alice} & \text{TX} \\
\end{array}
\quad
\begin{array}{c|c|c|c}
\text{ID} & \text{NAME} & \text{ADDR} \\
1 & \text{Alice} & \text{CA} \\
2 & \text{Alice} & \text{TX} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{ID} & \text{NAME} & \text{ADDR} \\
1 & \text{Alice} & \text{CA} \\
2 & \text{Alice} & \text{TX} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{ID} & \text{NAME} & \text{ADDR} \\
1 & \text{Alice} & \text{CA} \\
2 & \text{Alice} & \text{TX} \\
\end{array}
\]

Algorithm for information preserving

• R - a relational schema and \(P = \{R_1, \ldots, R_n\} \) a decomposition
• Does \(P \) preserves information?

- We show the algorithm’s run on the following example \(R(A, B, C, D, E, H) \)
- \(P = \{R_1(A, B), R_2(A, C, D), R_3(B, E, H)\} \)

Algorithm for information preserving

- In our example:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
A & B & C & D & E & H \\
\hline
1 & a & b & c & d & e & f \\
2 & a & c & d & e & f & h \\
3 & a & b & c_1 & d_1 & e_1 & h_1 \\
\end{array}
\]

\(R(A, B, C, D, E, H) \)

\(F = \{A \rightarrow B, C \rightarrow D, B \rightarrow EH\} \)

\(\rho = \{R_1(A, B), R_2(A, C, D), R_3(B, E, H)\} \)

Algorithm for information preserving

- 1st step - Initialization:
 - Create a relation \(r \) over \(R \) such that:
 - Every schema \(R_i \) has its own tuple \(t_i \)
 - For every attribute \(A \):
 - If \(A \in R_i \) then \(t_i[A] = a \)
 - Else \(t_i[A] = a_i \)
 - Similarly with \(b \) for \(B \), \(c \) for \(C \), etc.

Algorithm for information preserving

- 2nd step - chase
 - While the table changes do:
 - Look for an FD violation and equate the conclusions
 - “Equate” = change every occurrence of one to the other
 - When equating \(a_i \) with \(a \), change \(a_i \) with \(a \).

- 3rd step:
 - Return true if and only if there is a row without indexes.
Projection of FD's

- R - a relational schema
- F - a set of FD's
- $S \subseteq R$

- The projection of F on S, $\pi_S F$ is the set:
 \[\{ X \rightarrow Y | X \subseteq F \land X \cap Y \subseteq S \} \]

 - Intuitively, this is the set of FD's that are relevant to S

Outline

- Decomposition
- Preserving information
 - Example
 - Algorithm for checking
- Preserving dependencies
 - Projecting FD's
- Normal Forms
 - BCNF
 - 3NF
- Questions

Preserving Dependencies

- Intuition:
 - If each of the relations r_i over R_i satisfies the set of FD's that are relevant for R_i (i.e., $\pi_{R_i} F_i$) then all of the database satisfies F.
- Goal: simple updates
 - If a decomposition does not preserve dependencies then when we update a relation we need to check whether this update is consistent with the other relations.
 - Therefore we can live without it (although it is desired).
Preserving Dependencies - example

- \(R(\text{Phone, AreaCode, City}) \)
- \(F=\{\text{City} \rightarrow \text{AreaCode}, \) \(\text{AreaCode}, \text{Phone} \) \(\rightarrow \) \(\text{City} \} \)
- \(P=\{R1(\text{Phone, City}), R2(\text{AreaCode, City})\} \)

- This decomposition preserves information:
 - \(\text{City} \) is in both \(R1 \) and \(R2 \)
 - \(R2 \) \(\setminus \) \(R1 \) = \(\text{AreaCode} \)
 - \(F \) implies \(\text{City} \rightarrow \text{AreaCode} \)

- Does it preserve dependencies?

Preserving Dependencies

- A decomposition preserves dependencies if all of \(F \)’s dependencies are preserved.
- A functional dependency \(f \) is preserved if
 - There exists a schema that includes all of the attributes in \(f \)
 - \(F \) can be deduced from other dependencies that are preserved in the decomposition

Outline

- Decomposition
- Preserving information
 - Example
 - Algorithm for checking
- Preserving dependencies
 - Projecting FD’s
- Normal Forms
 - BCNF
 - 3NF
- Questions

Normal Forms

- Normal Form is a characteristics of relational schema that captures the “quality” of the schema in the following sense:
 - A schema is better if it prevents duplications

- We will discuss the following Normal Forms (NF):
 - BCNF
 - 3NF
BCNF – Boyce-Codd NF

- A schema R with a set F of FD’s is in BCNF if every nontrivial FD implied by F has a superkey on its premise (lhs)
 - That is, every $X \rightarrow Y$ in F^+ is such that X is a superkey; or
 - $Y \subseteq X$

BCNF – example

- $R = \{\text{Id, Name, Address}\}$
- $F = \{\text{Id} \rightarrow \text{Name}, \text{Name} \rightarrow \text{Address}\}$

- R is not BCNF w.r.t. F since
 - The only key is Id
 - $\text{Name} \rightarrow \text{Address}$ does not satisfy the condition

- For $F' = \{\text{Id} \rightarrow \text{Name}, \text{Id} \rightarrow \text{Address}\}$
 - R is BCNF w.r.t. F'

How to check whether a schema is BCNF?

By definition:
- Compute F^+
- For every FD $X \rightarrow Y \in F^+$ check whether X is a superkey.

Problem: the size of F^+ is exponential in R

Theorem: If R is not BCNF with respect to F (there exists an FD $X \rightarrow Y \in F^+$ that violates the conditions), then there exists an FD $Z \rightarrow W \in F$ that violates the conditions.

BCNF Vs. Preserving Dependencies

- Often we need to choose between BCNF and Preserving Dependencies
 - How should we choose?
 - If we have lots of updates of attributes that have duplications in the original database (for instance AreaCode)
 - BCNF prevents duplications
 - If we want to add/update attributes that appear in an FD that is not preserved (for instance Phone)
 - We use 3NF

3NF

- R – a relational schema
- F – a set of FD’s over R

- R is in 3NF if for every FD $X \rightarrow A \in F^*$ such that $A \notin X$
 - X is a superkey of R or
 - A is contained in a key of R

3NF - Example

- $R(\text{City, AreaCode, Phone})$
- $F = \{\text{City} \rightarrow \text{AreaCode}, (\text{AreaCode, Phone}) \rightarrow \text{City}\}$

- 3NF
 - The keys are
 - (City, Phone), (AreaCode, Phone)
 - Every FD from F satisfies 3NF conditions
 - As in BCNF, it suffices to check only those FD’s in F
Normal Forms

- Every BCNF schema is also in 3NF
 - The opposite does not necessarily hold
- BCNF prevents more duplications than 3NF
- There always exists a 3NF decomposition that preserves dependencies and information
 - This is not true in BCNF and therefore we will sometimes prefer 3NF even though it is less efficient in sense of duplications

Algorithm for finding 3NF decomposition

- Given a minimal cover of FD's
 1. If there exists an FD in F that includes all of the attributes in R, return (R).
 2. For every set of FD's of the form $X \rightarrow A_1, X \rightarrow A_2, \ldots, X \rightarrow A_n$, create a schema $(X, A_1, A_2, \ldots, A_n)$
 3. If none of the schemas contains a superkey of R, add a schema which is a superkey of R.

 - Note that this algorithm finds a decomposition that preserves information and dependencies.

3NF Decomposition - Example

$R(DName, DAddr, ID, PName, PAddr, PresNo, Date, MedName, Qnt)$

$F = \{ DName \rightarrow DAddr, ID \rightarrow PName, ID \rightarrow PAddr, ID \rightarrow DName, PresNo \rightarrow Date, PresNo \rightarrow ID, (PresNo, MedName) \rightarrow Qnt \}$

3NF Decomposition – Example (cont’d)

1. There is no FD that contains all of the attributes
2. We create the schemas:
 - $R_1(DName, DAddr)$
 - $R_2(ID, PName, PAddr, DName)$
 - $R_3(PresNo, Date, ID)$
 - $R_4(PresNo, MedName, Qnt)$
3. Note that R_4 contains the superkey $(PresNo, MedName)$ and therefore we do not need to add additional schema.

3NF

- Decompose the following schema to 3NF where:
 - $R(sid, sname, cnum, cname, grade)$
 - $F = \{ sid \rightarrow sname, cnum \rightarrow cname, (sid, cnum) \rightarrow grade \}$
- $R_1(sid, sname), R_2(cnum, cname), R_3(sid, cnu, grade)$

Outline

- Decomposition
- Preserving information
 - Example
 - Algorithm for checking
- Preserving dependencies
 - Projecting FD's
- Normal Forms
 - BCNF
 - 3NF
- Questions
Questions from Exam

R(A,B,C,D,E,H)
F={AB→H, E→BC, D→H, A→DE, C→E, D→BH}

Find a minimal cover to F
F is minimal if for every X→Y in F the following hold:
1. |Y| = 1
2. F → (X→Y)
3. For every Z ⊆ X it holds that F → (X→Y)

\[G = (X→A) \land Y \land (X→Y) \land F \land (A→Y) \]
Repeat:
1. For each f = X→A ∈ G do
 i. If A X then G ← G ∪ (f)
2. For each f = X→Y ∈ G and B ∈ X do
 i. If Ap(f) = Y then G ← G ∪ (X→A) \cup (X→B) \cup (X→A) \cup (X→B)
 until no more changes to G

Questions from Exam

G={E→B, E→C, D→H, A→D, A→E, C→E, D→B}
ρ = \{R₁(A, B, D), R₂(A, C), R₃(C, D, E, H)\}

Is ρ in BCNF?

R₁ is not BCNF
π₁G ≠ \{A→B, A→D, D→B\}
D is not a superkey!

Questions from Exam

ρ = \{R₁(A, B, D), R₂(A, C), R₃(C, D, E, H)\}
G={E→B, E→C, D→H, A→D, A→E, C→E, D→B}

Does this decomposition preserve dependencies?

\[
\text{for each } f = (X→Y) \in \rho \text{ do begin }
\begin{align*}
& f \leftarrow X; \\
& \text{repeat}\text{ for } i = 1 \to n \\
& \quad \text{if } f \in \rho \\
& \quad \text{then } f \leftarrow \rho \text{ \& } f \leftarrow \rho \text{ \& } f \leftarrow \rho \text{ \& } f \leftarrow \rho \\
& \quad \text{until no more change in } f.
\end{align*}
\]
And ρ is dependency preserving iff all \((X→Y) \in \rho\) are preserved.
Questions from Exam

\[p = \{R_1(A, B, D), R_2(A, C), R_3(C, D, E, H)\} \]
\[G = \{E \rightarrow B, E \rightarrow C, D \rightarrow H, A \rightarrow D, A \rightarrow E, C \rightarrow E, D \rightarrow B\} \]

E \rightarrow B is not contained in any schema

- \(Z = \{E\} \)
- \(Z \cap R_1 = \{\} \) no change to \(Z \)
- \(Z \cap R_2 = \{\} \) no change to \(Z \)
- \(Z \cap R_3 = \{E\} \)
 - \(\{B\} \cap R_1 \cap \{C, E\} \)
 - \(Z \cap \{C, E\} \)
- \(Z \cap R_1 = \{\} \) no change to \(Z \)
- \(Z \cap R_2 = \{\} \) no change to \(Z \)

E \rightarrow B is not preserved!