Outline

- Schema design
 - Introduction
 - Notation
- Functional dependencies
- Armstrong's axioms
- Minimal cover
- Keys
- Questions

Schema Design

Customer:

<table>
<thead>
<tr>
<th>Cust_Id</th>
<th>Faculty</th>
<th>Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>CS</td>
<td>Software</td>
</tr>
<tr>
<td>45678</td>
<td>EE</td>
<td>Hardware</td>
</tr>
<tr>
<td>11111</td>
<td>IE</td>
<td>IS</td>
</tr>
<tr>
<td>22222</td>
<td>IE</td>
<td>Accounting</td>
</tr>
</tbody>
</table>

Ordered:

<table>
<thead>
<tr>
<th>Cust_Id</th>
<th>Book_Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>Database Systems</td>
</tr>
<tr>
<td>45678</td>
<td>Anatomy</td>
</tr>
<tr>
<td>12345</td>
<td>Database And Knowledge</td>
</tr>
<tr>
<td>11111</td>
<td>Anatomy</td>
</tr>
<tr>
<td>22222</td>
<td>Intro. To Economy</td>
</tr>
</tbody>
</table>

Which design is better?

Good design – cont’d

- No duplications of data
- Enables simple updates
- Simple
- Not too many tables

We saw a way to design DB’s
 - ERD – has its limitations…
This lesson we will focus on an alternative way
 - Functional dependencies (FD’s)

Disadvantages of one table:
 - Redundant storage
 - Harder to update
 - Consistency issues
 - How should one represent a customer that has not ordered any book?
Notations

• Attributes - A,B,C,…
• Sets of attributes – X,Y,…
• We will often replace
 – {A} with A
 – {A,B} with AB
• Relational Schemas – R,S,T,…
 – R(A,B,C) or R={A,B,C} or R[A,B,C]
• The content of the relations – r, s, t
 – r={(1,2,3), (2,1,4)}
• Set of functional dependencies – F
 – A single functional dependency - f

Functional Dependencies - definitions

• Let
 – R(A,…,A_n) be a relational schema, let
 – r be a relation over R and let
 – X,Y ⊆ R be sets of attributes
• r is said to satisfy the functional dependency X→Y if
 – every two tuples that have the same value in X have the same values in Y
 – We denote this by r ⊨ X→Y

Outline

• Schema design
 – Introduction
 – Notation
• Functional dependencies
 – Armstrong’s axioms
 – Minimal cover
 – Keys
• Questions

Armstrong’s Axioms

• Three axioms for proving existence of dependencies. Given X,Y,Z⊆R:
 – Reflexivity: if X⊆Y then Y→X
 – Inclusion: if X→Y then XZ→YZ
 – Transitivity: if X→Y and Y→Z then X→Z
• Other modus ponens:
 – Union: if X→Y and X→Z then X→YZ
 – Decomposition: if X→Y and Z⊆Y then X→Z
 – Semi-transitivity: if X→Y and WY→Z then WX→Z

Armstrong’s Axioms

• Let F be a set of functional dependencies and let f be a FD.
 – f is provable from F (f ⊢ F) if f can be deduced from F by Armstrong’s axioms.
 – That is, we can formally prove f from F
Armstrong’s Axioms - example

• F={Cust_Id→Track, Track→Faculty}
• We show that
 – F⊦ Cust_Id→{Track, Faculty}

 1. Track → Faculty ∈ F
 2. Track → {Track, Faculty} ∈ Inclusion, 1
 3. Cust_Id → Track ∈ F
 4. Cust_Id → {Track, Faculty} ∈ 2,3,Trans.

Outline

• Schema design
 – Introduction
 – Notation
• Functional dependencies
• Armstrong’s axioms
• Minimal cover
• Keys
• Questions

Closure of FD’s

• Let F be a set of FD’s
 – The closure of F (F⁺) is the set
 \[\{X \rightarrow Y \mid F \vdash X \rightarrow Y\} \]

• Example: F={A→B, B→C}, the set F⁺ contains the following FD’s:
 – A→C, AB→C, AC→C, B→B, A→B, Ø→Ø, C→Ø
• Note that the set F⁺ is exponential and therefore we will try to avoid computing it.

Closure of a property

• Let
 – X be a set of properties and let
 – F be a set of FD’s
• The closure of X with respect to F (X⁺ₓ) is the set \(\{A \mid F \vdash X \rightarrow A\} \)
 – Note that A is a single attribute

Minimal Cover

• A set of FD’s might have “redundant” information, for instance the sets
 – F={A→B, B→C, A→C}
 – G={A→B, B→C}

 are equivalent in the sense that F⁺=G⁺
 – The dependency A→C is redundant
• Our goal: A unified form for FD’s

Minimal set of FD’s

• Let F be a set of FD’s, F is minimal if for every FD X→Y∈ F the following hold:
 – |Y|=1
 – F⁺ does not equal (F \ {X→Y})⁺
 – For all Z⊂X the following hold:
 • F⁺ does not equal ((F \ {X→Y}) \cup {Z→Y})⁺
 • i.e., F does not contain an FD X→A such that X includes redundant attributes
Minimal Cover

- Let F and G be sets of FD's
 - G is a cover for F (and vice versa) if $F^+ = G^+$
 - In this case we can use F instead of G

- A set of FD's F_C is a minimal cover of F if
 - It is a cover for F
 - It is minimal

- Note that there might be more than one minimal cover

Algorithm for finding a minimal cover

- Let F be a set of FD's we define
 - $G \leftarrow \{ (X \rightarrow A) \mid \exists Y ((X \rightarrow Y) \in F \land A \in Y) \}$

Repeat:
1. For each $f = X \rightarrow A \in G$ do:
 - if $A \in X^+_G \setminus \{f\}$ then $G \leftarrow G \setminus \{f\}$
2. For each $f = X \rightarrow A \in G$ and $B \in X$ do
 - if $A \in (X \setminus \{B\})^+_G$ then
 - $G \leftarrow (G \setminus \{X \rightarrow A\}) \cup \{X \setminus B \rightarrow A\}$

Until no more changes to G

Finding a minimal cover - example

- Let
 - $R = \{A, B, C, D\}$
 - $F = \{A \rightarrow B, BC \rightarrow A, ABC \rightarrow D, D \rightarrow A\}$

- Find a minimal cover of F

1st stage $G \leftarrow F$

Step 1: no change

Step 2: We omit the A from the FD $ABC \rightarrow D$ (since $D \in (\{A, B, C\}\setminus \{A\})^+_G$ and obtain
 - $G = \{A \rightarrow B, BC \rightarrow A, BC \rightarrow D, D \rightarrow A\}$

Step 1: We omit the FD $BC \rightarrow A$ (since $A \in BC^+_G \setminus \{BC \rightarrow A\}$ and obtain
 - $G = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$

- There are no more changes and therefore G is the minimal cover of F.

Outline

- Schema design
 - Introduction
 - Notation
- Functional dependencies
- Armstrong’s axioms
- Minimal cover
- Keys
- Questions

Keys

- Let
 - R be a relational schema and let
 - $X \subseteq R$ be a subset of attributes and let
 - F be a set of FD's

- X is a superkey of R if and only if $F = X \rightarrow R$, or equivalently:
 - X is a superkey of R if $X \rightarrow^* F$
 - X is a superkey of R if $X^+ = R$

Keys – cont’d

- Let $R = \{A, B, C, D\}$ and $F = \{A \rightarrow C, B \rightarrow D\}$
 - ABC is a superkey of R
 - However, it is not unique
 - And not minimal

- X is a key of R if
 - It is a superkey of R
 - There does not exist $Y \subset X$ such that Y is also a superkey
Question

Let U be a schema and let F be a non empty set of non trivial FDs over U.
Assume that the FDs in F are of the form $X \rightarrow A$ where A is a single attribute.

- True/False
 - For every non-trivial FD $X \rightarrow A$ in F there exists a key K such that $A \in K$
 - No!
 - $U=\{A,B\}$
 - $F=\{A \rightarrow B\}$
 - The only key is A and B does not belong to the set $\{A\}$

Question – cont’d

- The number of keys is at most the number of attributes in U?
 - False.
 - Let $U=\{A,B,C,D\}$ and let
 - $F=\{AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB\}$
 - Then AB, AC, AD, BC, BD, CD are keys
 - But there are only 4 attributes

Question – cont’d

- For every key K that does not equal U, there exists a non trivial FD $X \rightarrow A$ in F such that $A \in K$?
 - This statement is true.
 - There exists $A \in U$ such that $A \notin K$
 - Since K is a key, it holds that $A \in K$
 - Since $A \in K$, there exists X such that $A \notin X$ and $X \rightarrow A \in F$.

Question – cont’d

- Let F be a minimal cover and
 - L be the set of attributes that appear in the l.h.s of FD’s in F, and
 - R be the set of attributes that appear in the r.h.s of FD’s in F
 - If $R\cap L=\emptyset$ then there is a unique key?
 - True.
 - $U\setminus R$ is a superkey.
 - In fact, $X=U\setminus R$ is a key since every $A \in U\setminus R$ cannot be omitted without affecting its closure.
 - Let X be a key, we contend that $X=U\setminus R$.
 - If X does not contain $B \in U\setminus R$ then $B \notin (X)+F$.
 - Therefore X contains $U\setminus R$.
 - Since X is a key it is minimal, so $X=U\setminus R$.
 - Thus, $U\setminus R$ is a unique key